首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ascorbate and glutathione are indispensable cellular redox buffers and allow plants to acclimate stressful conditions. Arabidopsis contains three functional dehydroascorbate reductases (DHAR1-3), which catalyzes the conversion of dehydroascorbate into its reduced form using glutathione as a reductant. We herein attempted to elucidate the physiological role in DHAR1 and DHAR2 in stress responses. The total DHAR activities in DHAR knockout Arabidopsis plants, dhar1 and dhar2, were 22 and 92%, respectively, that in wild-type leaves. Under high light (HL), the levels of total ascorbate and dehydroascorbate were only reduced and increased, respectively, in dhar1. The oxidation of glutathione under HL was significantly inhibited in both dhar1 and dhar2, while glutathione contents were only enhanced in dhar1. The dhar1 showed stronger visible symptoms than the dhar2 under photooxidative stress conditions. Our results demonstrated a pivotal role of DHAR1 in the modulation of cellular redox states under photooxidative stress.  相似文献   

2.
Dehydroascorbate reductase (DHAR) is a key component of the ascorbate recycling system. Three functional DHAR genes are encoded in the Arabidopsis genome. Ozone exposure increased the expression of the cytosolic DHAR (cytDHAR) gene alone. We characterized an Arabidopsis mutant with a deficient cytDHAR. The mutant completely lacked cytDHAR activity and was highly ozone sensitive. The amounts of total ascorbate and glutathione were similar in both lines, but the amount of apoplastic ascorbate in the mutant was 61.5% lower. These results indicate that the apoplastic ascorbate, which is generated through the reduction of DHA by cytDHAR, is important for ozone tolerance.  相似文献   

3.
通过盆栽实验, 对干旱胁迫下黄土高原地区冰草(Agropyron cristatum)叶片的抗坏血酸和谷胱甘肽合成及循环代谢相关酶及物质含量进行了研究。结果表明: 冰草可以通过增强叶片的抗坏血酸和谷胱甘肽合成及循环代谢酶: 抗坏血酸过氧化物酶、谷胱甘肽还原酶、脱氢抗坏血酸还原酶、单脱氢抗坏血酸还原酶、L-半乳糖酸-1, 4-内酯脱氢酶和γ-谷氨酰半胱氨酸合成酶活性, 维持植物体内抗坏血酸和谷胱甘肽水平及氧化还原状态, 从而抵御干旱造成的氧化胁迫。但叶片抗坏血酸和谷胱甘肽合成及循环代谢对不同水平干旱胁迫的响应, 随胁迫时间的延长而不同。在胁迫24天以前, 严重干旱下叶片的抗坏血酸和谷胱甘肽合成及循环代谢增强较显著; 在胁迫24天后, 由于该胁迫下植物所遭受的氧化胁迫较为严重, 叶片中上述6种酶的活性均呈降低趋势。而在中度干旱下叶片抗坏血酸和谷胱甘肽合成及循环代谢相关的6种酶在整个胁迫过程中均保持较高的活性。这说明, 冰草能够长时间有效地抵御中度干旱所造成的氧化胁迫, 但只能在一定时间范围内有效地抵御严重干旱所造成的氧化胁迫, 胁迫时间延长则会降低其抵御严重干旱的能力。  相似文献   

4.
An ascorbate-deficient semi-dwarf mutant asfL-1 was detected in 250 Gy γ-ray treated grass pea (Lathyrus sativus L.) cv. BioR-231. The mutant contained only 42 % of leaf and 20 % of root ascorbate content of mother control (MC). I investigated the possible causes of ascorbate deficiency and its effect on growth and antioxidant defense in control and 150 mM NaCl-treated seedling after 60 d growth period. Ascorbate deficiency was due to significant reduction in activities of monodehydroascorbate reductase and dehydroascorbate reductase as well as increase in ascorbate oxidase, leading to considerable decrease in redox state. Despite low ascorbate pool and decrease in ascorbate peroxidase activity, shoot and root biomass production in asfL-1 mutant were similar to MC plants, even at NaCl treatment. High accumulation of glutathione (GSH) coupled with high activities of GSH reductase, catalase, GSH peroxidase and peroxidase in both tissues of the mutant permitted efficient recycling of GSH and scavenging of H2O2 through well integrated catalase/peroxidase system, despite high superoxide dismutase activity under NaCl treatment. The collapse of this system led to inhibition of growth in NaCl-treated mother plants. Together, the results suggested that asfL-1 plants undertook a major reshuffle in its antioxidant defense machinery, which effectively counterbalanced the negative impact of ascorbate deficiency and remained unperturbed by NaCl treatment to maintain normal growth and biomass production.  相似文献   

5.
This study investigated the effects of exogenous hydrogen sulfide (H2S) on the redox states of ascorbate (AsA) and glutathione (GSH) in maize leaves under NaCl (100 mM) stress. Salt stress increased the activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), Γ-glutamylcysteine synthetase (Γ-ECS), and L-galactono-1,4-lactone dehydrogenase (GalLDH), malondialdehyde content and electrolyte leakage, and reduced the ratios of reduced and oxidised forms of AsA (AsA/DHA) and GSH (GSH/GSSG) compared with control. Pretreatment with NaHS (H2S donor) further enhanced the activities of the above enzymes except MDHAR and ameliorated the decrease in the ratios of AsA/DHA and GSH/GSSG compared with the salt stress alone. Pretreatment with NaHS significantly reduced the malondialdehyde content and electrolyte leakage induced by the salt stress. Pretreatment with NaHS alone did not affect any of the above mentioned parameters compared with the control. Our results suggest that exogenous H2S could maintain the redox states of ascorbate and glutathione by up-regulating the ascorbate and glutathione metabolism and thus play an important role for acquisition of salt stress tolerance in maize.  相似文献   

6.
7.
To explore the significance of the ascorbate–glutathione cycle under drought stress, the leaves of 2-year-old potted apple (Malus domestica Borkh.) plants were used to investigate the changes of each component of the ascorbate–glutathione cycle as well as the gene expression of dehydroascorbate reductase (DHAR, EC 1.8.5.1), ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) under drought stress. The results showed that the malondialdehyde (MDA) and H2O2 concentrations in apple leaves increased during drought stress and began to decrease after re-watering. The contents of total ascorbate, reduced ascorbic acid (AsA), total glutathione and glutathione (GSH) were obviously upregulated in apple leaves when the soil water content was 40–45%. With further increase of the drought level, the contents of the antioxidants and especially redox state of AsA and GSH declined. However, levels of them increased again after re-watering. Moreover, drought stress induced significant increase of the activities of enzymes such as APX, scavenging H2O2, and also of monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), DHAR and GR used to regenerate AsA and GSH, especially when the soil water content was above 40–45%. During severe drought stress, activities of the enzymes were decreased and after re-watering increased again. Gene expression of cytoplasmic DHAR, cytoplasmic APX and cytoplasmic GR showed similar changes as the enzyme activities, respectively. The results suggest that the ascorbate–glutathione cycle is up-regulated in response to drought stress, but cannot be regulated at severe drought stress conditions.  相似文献   

8.
Effects of exogenous salicylic acid (SA) on plant growth, contents of Na, K, Ca and Mg, activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and catalase (CAT), and contents of ascorbate and glutathione were investigated in tomato (Lycopersicon esculentum L.) plants treated with 100 mM NaCl. NaCl treatment significantly increased H2O2 content and lipid peroxidation indicated by accumulation of thiobarbituric acid reactive substances (TBARS). A foliar spray of 1 mM SA significantly decreased lipid peroxidation caused by NaCl and improved the plant growth. This alleviation of NaCl toxicity by SA was related to decreases in Na contents, increases in K and Mg contents in shoots and roots, and increases in the activities of SOD, CAT, GPX and DHAR and the contents of ascorbate and glutathione.  相似文献   

9.
The ascorbate-glutathione system was studied during development and maturation of beech (Fagus sylvatica L.) seeds, the classification of which in the orthodox category is controversial. This study revealed an increase in glutathione content after acquisition of desiccation tolerance, which was more intensive in embryonic axes than in cotyledons. During seed maturation, the redox status of glutathione markedly changed toward the more reducing state, especially in cotyledons. Ascorbic acid content decreased during maturation, mostly in cotyledons. Activities of the enzymes of the ascorbate-glutathione cycle—ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2)—were markedly higher in embryonic axes than in cotyledons throughout the study period. In the course of seed maturation, the activities of these enzymes decreased. Importance of the ascorbate-glutathione cycle in desiccation tolerance of beech seeds was discussed in relation to results for typical orthodox and recalcitrant seeds of other broadleaved species.  相似文献   

10.
The involvement of the ascorbate-glutathione cycle in the defence against Cu-induced oxidative stress was studied in the roots of Phaseolus vulgaris L. cv. Limburgse vroege. All the enzymes of this cycle [ascorbate peroxidase (APOD), EC 1.11.1.11; monodehydroascorbate reductase (MDHAR), EC 1.6.5.4; dehydroascorbate reductase (DHAR), EC 1.8.5.1; glutathione reductase (GR), EC 1.6.4.2] were increased, and the total ascorbate and glutathione pools rose after a 15 μ M root Cu treatment. In the first hours after the start of the experiment, the accumulation of dehydroascorbate (DHA), formed as a result of a Cu-mediated direct oxidation of ascorbate (AA), was limited by a non-enzymatic reduction using glutathione (GSH) as the reductant. At 24 h, the enzyme capacities of both DHAR and GR were increased to maintain the redox status of the AA and GSH pools. After 72 h of Cu application, the DHAR capacity was inhibited and MDHAR was responsible for maintaining the AA pool in its reduced form. Although the GR capacity was enhanced after 72 h in the treated plants, the GSSG/GSH ratio was increased. This could be due to direct participation of GSH in the detoxification of Cu through reduction and complexation.  相似文献   

11.
C. Shan  F. He  G. Xu  R. Han  Z. Liang 《Biologia Plantarum》2012,56(1):187-191
This study investigated the regulation of ascorbate and glutathione metabolism by nitric oxide in Agropyron cristatum leaves under water stress. The activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), L-galactono-1,4-lactone dehydrogenase (GalLDH) and γ-glutamylcysteine synthetase (γ-ECS), and the contents of NO, reduced ascorbic acid (AsA), reduced glutathione (GSH), total ascorbate and total glutathione increased under water stress. These increases were suppressed by pretreatments with NO synthesis inhibitors N G-nitro-L-arginine methyl ester (L-NAME) and 4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). However, application of L-NAME and cPTIO to plants sufficiently supplied with water did not affect the activities of above mentioned enzymes and the contents of NO and above mentioned antioxidants. Pretreatments with L-NAME and cPTIO increased the malondialdehyde (MDA) content and electrolyte leakage of plants under water stress. Our results suggested that water stress-induced NO is a signal that leads to the upregulation of ascorbate and glutathione metabolism and has important role for acquisition of water stress tolerance.  相似文献   

12.
To explore the viability of using enzyme activities and their substrates as an alternative tool for the determination of mineral (i.e., Mg) critical values, a detailed characterization of the response of the antioxidative system of Capsicum annuum L. leaves under Mg deficiency was carried out. The response of each selected enzyme activity and substrate [i.e., superoxide dismutase (SOD), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR); ascorbate and glutathione pool; protein and chlorophyll concentration] was subjected to mathematical modelling in order to calculate Mg critical values (xc). Our xc values ranged from 0.70 to 0.14%, on a dry weight (DW) basis, for GR activity and total glutathione concentration, respectively. Our results suggest that, under Mg deficiency, cells enhance their antioxidative defence system by initially increasing their SOD and GR activities. Subsequently, higher GSH/GSSG ratios were observed, probably due to a greater increase in GR activity (xc = 0.70% DW) than in total glutathione concentration (xc = 0.14% DW). In contrast, xc values for total ascorbate concentrations (xc = 0.29% DW) were higher than those for DHAR activities (xc = 0.19% DW). In an attempt to study the limitations regarding the utilization of these enzymes and substrates as markers of Mg critical values in pepper, the xc values here obtained were compared to those based on growth parameters that have been reported in the literature. Overall, the results indicate that some enzymes and substrates, such as total ascorbate concentration, 1/protein ratio, and DHAR activity, might be suitable markers for the determination of Mg critical values in pepper plants under controlled conditions.  相似文献   

13.
In wild species of almond (Prunus spp.), the activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), as well as the levels of ascorbate/glutathione pools and H2O2 were subjected to water deficit and shade conditions. After 60 days of water shortage, the species were subjected to a rewatering treatment. During water recovery, leaves exposed to sunlight and leaves under shade conditions of about 20–35% of environmental irradiance were sampled. After 70 days without irrigation, mean predawn leaf water potential of all the species fell from −0.32 to −2.30 MPa and marked decreases in CO2 uptake and transpiration occurred. The activities of APX, MDHAR, DHAR, and GR increased in relation to the severity of drought stress in all the wild species studied. Generally, APX, MDHAR, DHAR, and GR were down-regulated during the rewatering phase and their activities decreased faster in shaded leaves than in sun-exposed leaves. The levels in total ascorbate, glutathione, and H2O2 were directly related to the increase in drought stress and subsequently decreased during rewatering. The antioxidant response of wild almond species to drought stress limits cellular damage caused by reactive oxygen species during periods of water deficit and may be of key importance for the selection of drought-resistant rootstocks for cultivated almond.  相似文献   

14.
Nitric oxide (NO) has emerged as an important signaling molecule in plants, but little is known about the effects of reactive nitrogen species in plant mitochondria. In this study, the effects of DETA‐NONOate, a pure NO slow generator, and of SIN‐1 (3‐morpholinosydnonimine), a peroxynitrite producer, on the activities of respiratory pathways, enzymatic and non‐enzymatic antioxidants have been investigated in isolated mitochondria from pea leaves. No significant changes in lipid peroxidation, protein oxidation or in ascorbate and glutathione redox state were observed after DETA‐NONOate treatments whereas cytochrome pathway (CP) respiration was reversibly inhibited and alternative pathway (AP) respiration showed little inhibition. On the other hand, NO did not affect neither activities of Mn superoxide dismutase (Mn‐SOD) nor enzymes involved in the ascorbate and glutathione regeneration in mitochondria except for ascorbate peroxidase (APX), which was reversely inhibited depending on ascorbate concentration. Finally, SIN‐1 treatment of mitochondria produced a decrease in CP respiration, an increase in protein oxidation and strongly inhibited APX activity (90%), with glutathione reductase and dehydroascorbate reductase (DHAR) being moderately inhibited (30 and 20%, respectively). This treatment did not affect monodehydroascorbate reductase (MDHAR) and Mn‐SOD activities. Results showed that mitochondrial nitrosative stress was not necessarily accompanied by oxidative stress. We suggest that NO‐resistant AP and mitochondrial APX may be important components of the H2O2‐signaling pathways under nitrosative stress induced by NO in this organelle. Also, MDHAR and DHAR, via ascorbate regeneration, could constitute an essential antioxidant defense together with Mn‐SOD, against NO and ONOO? stress in plant mitochondria.  相似文献   

15.
Ascorbate (vitamin C) plays an important role in detoxification of reactive oxygen species (ROS) in most living organisms. Monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) is crucial to regeneration of the oxidized form of ascorbate (monodehydroascorbate) so that it can be recycled to maintain ROS scavenging ability. The MDHAR gene from Brassica rapa L. was cloned and introduced into Arabidopsis thaliana (L.) Heynh. to test the hypothesis that enhanced ROS scavenging activity of BrMDHAR alleviates freezing stress. BrMDHAR was expressed under the control of either the CaMV 35S promoter or stress inducible SWPA2 promoter. Ectopic expression of BrMDHAR led to the up-regulation of many antioxidant genes, including APX, DHAR, GR, SOD, GPX, and PRX Q, which are involved in ascorbate–glutathione cycle. And, transgenic plants showed improved stress tolerance against freezing with exhibiting higher levels of chlorophyll content and antioxidant molecules such as ascorbate and glutathione as well as alleviated redox status and malondialdehyde contents. These results suggested that ectopic expression of BrMDHAR conferred improved tolerance to freezing stress not only by simply recycling ascorbate, but also by inducing co-regulation of the ascorbate–glutathione cycle, which in turn enhances the antioxidant capacity of the host plants.  相似文献   

16.
In order to elucidate the response of the ascorbate-glutathione (ASC-GSH) cycle to drought stress, the activities of antioxidant enzymes and the levels of molecules involved in the ASC-GSH metabolism were studied in Trifolium repens L. seedlings subjected to PEG-induced water deficit. Compared to the control, the contents of H2O2, thiobarbituric acid reactive substances (TBARS), ascorbate (ASC), dehydroascorbate (DHA), and glutathione disulfide (GSSG) increased in PEG-treated seedlings, whereas the glutathione (GSH) content kept constant during the drought period. Further more, the ASC/DHA and GSH/GSSG ratios decreased in the presence of PEG. Except for that of monodehydroascorbate reductase (MDHAR), the activities of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) were up-regulated during water deficit, and the increases in APX and DHAR activities were much higher than those in GR activity. These data indicate that fluctuations in the ASC-GSH metabolism resulted from PEG treatment may have a positive effect on drought stress mitigation in T. repens.  相似文献   

17.
The effect of magnesium (Mg2+)‐deficiency on the antioxidant responses of Capsicum annuum was investigated over a 60‐day period under controlled conditions. This Mg2+‐deficiency aimed to mimic the physiological conditions that plants may experience in the field. At each harvest time, five different leaf‐levels (L2 to L6) were distinguished. L2 and L6 correspond to the second and sixth youngest leaves, respectively. The following parameters were determined: Mg2+, chlorophyll and protein contents, total and redox pools of ascorbate and glutathione, and the activities of superoxide dismutase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. Under Mg2+‐deficiency, leaf Mg2+ contents decreased over time in all leaf‐levels except in the second youngest leaves (L2), where they remained constant at about 0.25% (dry weight basis). Mg2+‐deficiency led to an increase in the antioxidant enzyme activities concomitant with an increase in the ascorbate and glutathione pools, whereas total chlorophyll and soluble protein contents decreased. The L2 leaves showed an increase in glutathione reductase activity and in the ascorbate redox state whereas no difference was observed for the other parameters. Superoxide dismutase activities increased in L5 leaves from day 15 and, afterwards, in L3 to L5 leaves, irrespective of Mg2+ content. At day 30, glutathione reductase activities increased in L2 to L4 leaves and dehydroascorbate reductase activities in L4 leaves. At day 45, we observed an increase in the ascorbate peroxidase activities in L3 to L5 leaves. At the same time, ascorbate and glutathione pools increased in intermediate leaves, whereas chlorophyll content decreased in L3 and L4 leaves, and protein content decreased in L4 leaves. Results suggest that pepper leaves enhance their defence capacities against oxidative stress by increasing ascorbate more than glutathione synthesis. However, cells showed higher regeneration rates for the glutathione redox state than for the ascorbate redox state.  相似文献   

18.
Ali MB  Yu KW  Hahn EJ  Paek KY 《Plant cell reports》2006,25(6):613-620
The effects of methyl jasmonate (MJ) and salicylic acid (SA) on changes of the activities of major antioxidant enzymes, superoxide anion accumulation (O2 ), ascorbate, total glutathione (TG), malondialdehyde (MDA) content and ginsenoside accumulation were investigated in ginseng roots (Panax ginseng L.) in 4 l (working volume) air lift bioreactors. Single treatment of 200 μM MJ and SA to P. ginseng roots enhanced ginsenoside accumulation compared to the control and harvested 3, 5, 7 and 9 days after treatment. MJ and SA treatment induced an oxidative stress in P. ginseng roots, as shown by an increase in lipid peroxidation due to rise in O2 accumulation. Activity of superoxide dismutase (SOD) was inhibited in MJ-treated roots, while the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), SOD, guaiacol peroxidase (G-POD), glutathione peroxidase (GPx) and glutathione reductase (GR) were induced in SA-treated roots. A strong decrease in the activity of catalase (CAT) was obtained in both MJ- and SA-treated roots. Activities of ascorbate peroxidase (APX) and glutathione S transferase (GST) were higher in MJ than SA while the contents of reduced ascorbate (ASC), redox state (ASC/(ASC+DHA)) and TG were higher in SA- than MJ-treated roots while oxidized ascorbate (DHA) decreased in both cases. The result of these analyses suggests that roots are better protected against the O2 stress, thus mitigating MJ and SA stress. The information obtained in this work is useful for efficient large-scale production of ginsenoside by plant-root cultures.  相似文献   

19.
Kuzniak E  Skłodowska M 《Planta》2005,222(1):192-200
Peroxisomes, being one of the main organelles where reactive oxygen species (ROS) are both generated and detoxified, have been suggested to be instrumental in redox-mediated plant cell defence against oxidative stress. We studied the involvement of tomato (Lycopersicon esculentum Mill.) leaf peroxisomes in defence response to oxidative stress generated upon Botrytis cinerea Pers. infection. The peroxisomal antioxidant potential expressed as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6) and glutathione peroxidase (GSH-Px, EC 1.11.1.19) as well as the ascorbate-glutathione (AA-GSH) cycle activities was monitored. The initial infection-induced increase in SOD, CAT and GSH-Px indicating antioxidant defence activation was followed by a progressive inhibition concomitant with disease symptom development. Likewise, the activities of AA-GSH cycle enzymes: ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2) as well as ascorbate and glutathione concentrations and redox ratios were significantly decreased. However, the rate and timing of these events differed. Our results indicate that B. cinerea triggers significant changes in the peroxisomal antioxidant system leading to a collapse of the protective mechanism at advanced stage of infection. These changes appear to be partly the effect of pathogen-promoted leaf senescence.  相似文献   

20.
Compared to non-embryogenic callus, proembryonic mass, globular, and heart-shaped embryos of Eleutherococcus senticosus had higher levels of endogenous reduced glutathione (GSH). GSH content declined during the course of the embryo development (torpedo and cotyledon). Similarly, glutathione reductase that is involved in the recycling of GSH providing a constant intracellular level of GSH was also higher in globular and heart-shaped embryos. The transient increase in GSH contents also correlated with the changes in measured γ-glutamylcysteine synthetase activity over the same period. The endogenous levels of oxidized glutathione showed similar trend during development of the somatic embryos, whereas it declined in maturing somatic embryos. A pronounced increase in glutathione-S-transferase, glutathione peroxidase, catalase, and guaiacol peroxidase activity was observed during somatic embryo maturation. Ascorbate-glutathione cycle enzymes (ascorbate peroxidase; dehydroascorbate reductase and monodehydroascorbate reductase) activities also induced indicated that antioxidant enzymes played an important role during embryo development. These results suggested that the coordinated up-regulations of the antioxidant enzymes and glutathione redox system provide protection during somatic embryo development in E. senticosus. Antioxidant responses through alterations of the glutathione redox systems, have been described in the present studies have a significant role in somatic embryo development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号