首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the effect of several phosphonium-based ionic liquids (ILs) on the activity of lipase from Burkholderia cepacia (BCL) was evaluated by experimental assays and molecular docking. ILs comprising different cations ([P4444]+, [P444(14)]+, [P666(14)]+) and anions (Cl, Br, [Deca], [Phosp], [NTf2]) were investigated to appraise the individual roles of IL ions on the BCL activity. From the activity assays, it was found that an increase in the cation alkyl chain length leads to a decrease on the BCL enzymatic activity. ILs with the anions [Phosp] and [NTf2] increase the BCL activity, while the remaining [P666(14)]-based ILs with the Cl, Br, and [Deca] anions display a negative effect on the BCL activity. The highest activity of BCL was identified with the IL [P666(14)][NTf2] (increase in the enzymatic activity of BCL by 61% at 0.055 mol·L−1). According to the interactions determined by molecular docking, IL cations preferentially interact with the Leu17 residue (amino acid present in the BCL oxyanion hole). The anion [Deca] has a higher binding affinity compared to Cl and Br, and mainly interacts by hydrogen-bonding with Ser87, an amino acid residue which constitutes the catalytic triad of BCL. The anions [Phosp] and [NTf2] have high binding energies (−6.2 and −5.6 kcal·mol−1, respectively) with BCL, and preferentially interact with the side chain amino acids of the enzyme and not with residues of the active site. Furthermore, FTIR analysis of the protein secondary structure show that ILs that lead to a decrease on the α-helix content result in a higher BCL activity, which may be derived from an easier access of the substrate to the BCL active site.  相似文献   

2.
The solubilities of H2S in ionic liquids, 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim+][BF4?]), 1-butyl-3-methylimidazolium hexaflorophosphate ([C4mim+][PF6?]) and -butyl-3-methylimidazolium tetrafluoroborate bis(trifluoromethanesulphonyl)amide ([C4mim+][Tf2N?]) are predicted using isothermal–isobaric Gibbs ensemble Monte Carlo method (NPT-GEMC) at temperatures ranging from 333 to 453 K and pressure up to 20 bar. The low pressure points (up to 3 bar) of the absorption isotherms are fitted to a straight line to get a rough estimation of the Henry’s law constants. The van’t Hoff relationship is used to estimate the partial molar enthalpy of the absorption. The obtained results are in a good agreement with Jou and Mather [18], and Jalili et al. [13]. When comparing the solubility in ILs, it is found that H2S solubility is highest for [C4mim+][Tf2N?], followed by [C4mim+][PF6?]. The lowest solubility is observed in [C4mim+][BF4?]. The highest solubility in [C4mim+][Tf2N?] is consistent with Jalili et al. [13]. However, their results indicate slightly higher solubility in [C4mim+][BF4?] than in [C4mim+][PF6?], and do not agree with the predictions. Upon absorption, the molar volumes of the mixtures decrease linearly, showing only small changes in volume. The effect of H2S absorption on ILs is further studied by calculating the radial distribution functions between the ions. The results indicate that the solute molecules accommodate themselves in the cavities without significantly disturbing the ionic arrangement of the ions, similar to CO2 absorption in ILs. The spatial distribution functions show similar spatial distribution for H2S around cation in all of the studied ILs, whereas the distribution around anion depends on the shape and flexibility of the anion. The mechanism of H2S absorption is studied by computing the van der Waals (VDW) and electrostatic (ELEC) energies. It is observed that the solubility of H2S in the studied ILs is primarily controlled by VDW interaction. When comparing the interaction of H2S with the ions, it is found that solute molecules interact with cations mainly due to VDW interaction. Both VDW and ELEC energies contribute in the interaction between H2S and anions.  相似文献   

3.
Biphasic processes are used in whole-cell biotransformation to overcome the low water solubility of substrates and products as well as their inhibitory effects on the biocatalyst. Commercially available [NTf2]- and [PF6]-based ionic liquids (ILs) were used in a biphasic system for the 15α-hydroxylation of 13-ethyl-gon-4-en-3,17-dione by Penicillium raistrickii. With the substrate at 5 g l?1 and a volume ratio of IL to buffer, buffer pH and cell density at, 1:9, 6.5, 16.8 gDW l?1, respectively, the 15α-hydroxylation of 13-ethyl-gon-4-en-3,17-dione was achieved with a yield of 70 % after 72 h using [BMIm][NTf2] in a 50 ml biphasic system. This is compared to a 30 % yield in a monophasic aqueous system. This suggests the potential industrial application of ILs-based biphasic systems for steroid biotransformation.  相似文献   

4.
Polycaprolactone (PCL) was synthesized by ring-opening polymerization of ε-caprolactone through two different enzymatic processes. The lipase from Candida antarctica B, immobilized on macroporous acrylic acid beads, was employed either untreated or coated with small amounts of ionic liquids (ILs). Monocationic ionic liquids, [C n MIm][NTf2] (n = 2, 6, 12), as well as a dicationic ionic liquid, ([C4(C6Im)2][NTf2]2), were used to coat the immobilized lipase and also as the reaction medium. In both methods, the polarity, anion of the ILs concentration and viscosity strongly influenced the reaction. Coating the immobilized enzyme with ILs improved catalytic activity and less ILs was required to produce PCL with a higher molecular weight and reaction yield. At 60 °C and ILs/Novozyme-435 coating ratio of 3:1 (w/w) for 48 h, the highest M w and reaction yield of PCL were 35,600 g/mol and 62 % in the case of [C12MIm][NTf2], while the M w and reaction yield of PCL was 20,300 g/mol and 54 % with [C12MIm][NTf2] and catalyzed by untreated lipase.  相似文献   

5.
Compared with imidazolium-based ionic liquids (ILs), phosphonium-based ILs have been proven to be more stable in thermodynamics and less expensive to manufacture. In this work, a kind of phosphonium-based IL, [PC6C6C6C14][Tf2N], was studied under several conditions using molecular dynamics simulations based on both the all-atom force field (AAFF) and the united-atom force field. Liquid density was calculated to validate the force field. Compared with experimental data, good agreement was obtained for the simulated density based on the AAFF. Heat capacities at constant pressure were calculated at several temperatures, and good linear relationships were observed. Self-diffusion coefficients, viscosities and conductivities were also calculated to study the dynamics properties of this IL. The viscosity of this IL at 293 K was also compared with experimental data, and the error was in a reasonable range. In order to depict the microstructures of the IL, centre-of-mass and site-to-site radial distribution functions were employed. In addition, spatial distribution functions were investigated to present the more intuitive features.  相似文献   

6.
The effect of replacing bis(trifluoromethylsulphonyl)imide ([NTf2]) by hexafluorophosphate ([PF6]) in room temperature ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethylsulphonyl)imide ([BMIm][NTf2]) confined between two gold interfaces is herein reported through molecular dynamics simulations using all-atom non-polarisable force-fields. Five systems were studied ranging from pure [BMIm][NTf2] to pure [BMIm][PF6], with [PF6] molar fractions of 0, 0.125, 0.25, 0.375 and 0.5. Special attention was drawn to investigate the impact of the [PF6] anion on the IL, in particular on the first layers of the liquid in close contact with the solid gold surface.  相似文献   

7.
Continuous dynamic kinetic resolution processes in different ionic liquid/supercritical carbon dioxide biphasic systems were carried out by simultaneously using both immobilized Candida antarctica lipase B (Novozym 435) and silica modified with benzenosulfonic acid (SCX) catalysts at 40°C and 10 MPa. SCX was seen to act as an efficient heterogeneous chemical catalyst for the racemization of (S)-1-phenylethanol in different ionic liquid media ([emim][NTf2], [btma][NTf2] and [bmim][PF6]). Coating both chemical and enzymatic catalysts with ILs greatly improved the efficiency of the process, providing a good yield (76%) of (R)-1-phenylethyl propionate product with excellent enantioselectivity (ee = 91–98%) in continuous operation.  相似文献   

8.
Human oxyhemoglobin (HbO2) in the presence of excess nucleophile (e.g., N3?, SCN?, F?, Cl?) is shown by visible and Soret spectra to form cleanly the oxidized metHb with the nucleophile as ligand. The rates, sensitive to pH and to both the concentration and the nucleophilicity of anionic nucleophile (N?), follow the rate law: rate = k[HbO2][N?][H+]. This autoxidation process thus appears to involve the nucleophilic displacement of superoxide from a protonated intermediate and can reasonably account for normal metHb formation in the erythrocyte where chloride can serve as the nucleophile. MetHb formation due to electron transfer agents (e.g. nitrite) which are normally not present can follow a different course such as direct electron transfer to bound dioxygen to form iron (III) peroxide. Abnormal amino acids or denaturation can provide increased access of nucleophile or electron transfer reactant and thus promote autoxidation.  相似文献   

9.
Reaction of the cluster salt [(η5-Cp)3Mo3S4][pts] ([1][pts], Cp=methylcyclopentadienyl; pts=p-toluenesulfonate) with CuCl yielded a new heterobimetallic cluster, [(η5-Cp)3Mo3S4Cu(Cl)][pts] ([2][pts]). X-ray crystal structure determination of [1][pts] and [2][pts] showed that the incorporation of CuCl into the Mo3S4 cluster core has only minor consequences on the Mo-Mo and Mo-S distances. The metal atoms in the cluster core of [2]+ form an almost regular tetrahedron. The [2]+ cation conforms to an idealized C3v symmetry ignoring the Cp groups since the Cu-Cl bond is almost aligned with the axis defined by the Cu-S(4) cube diagonal.  相似文献   

10.
Some cations of ionic liquids (ILs) of interest for high‐energy electrochemical storage devices, such as lithium batteries and supercapacitors, have a structure similar to that of surfactants. For such, it is very important to understand if these IL cations tend to aggregate like surfactants since this would affect the ion mobility and thus the ionic conductivity. The aggregation behaviour of ILs consisting of the bis(trifluoromethanesulfonyl)imide anion and different N‐alkyl‐N‐methyl‐pyrrolidinium cations, with the alkyl chain varied from C3H7 to C8H17, was extensively studied with NMR and Raman methods, also in the presence of Li+ cations. 2H NMR spin‐lattice and spin‐spin relaxation rates were analyzed by applying the “two step” model of surfactant dynamics. Here we show that, indeed, the cations in these ILs tend to form aggregates surrounded by the anions. The effect is even more pronounced in the presence of dissolved lithium cations.  相似文献   

11.
Since addition of 10?4M AgNO3 to either an inside or outside bathing medium containing sulfate had no effect on short-circuit current (SCC), a measure of net Na+ transport, or transmural potential difference (PD) in the isolated surviving toadskin, the effect of adding Ag+ to chloridebased Ringer solution was studied. Exposure of the outside bathing medium to 10?4M AgNO3 resulted in, after a 20 minute time lag, a 250 ± 51% (N=6) increase in SCC within 100 minutes as opposed to an immediate response which had a 350 ± 26% (N=8) increase in SCC by addition of 10?4M AgNO3 to the inside bathing solution. The dose response curve relating change in SCC to the Ag+ concentration added to the inside bathing medium was saturable at 10?5M Ag+. The uptake of Ag+ by the tissue, as measured by atomic absorption spectrophotometry, showed no correlation to the relative change in SCC. Na+ flux experiments under short-circuited conditions showed that Ag+Cl? stimulated only the unidirectional outside to inside Na+ flux. These results indicate that Ag+Cl? enhances active sodium transport and that Ag+Cl? binding to specific membrane groups is required for this effect.  相似文献   

12.
13.
Xuan Peng 《Molecular simulation》2017,43(18):1546-1555
We perform a molecular simulation study on adsorption and separation of the noble gases Xe and Kr in silica-templated amorphous mesoporous carbons (CMK) materials. We generate the atomic models of CMK-3 and CMK-5 materials by adsorbing carbon in a model MCM-41 pore. Our carbon structures can capture the surface roughness and the disordered nature of the carbon rods and carbon pipes as reported in the experiment. The adsorption isotherms and isosteric heats of pure gases have been examined further. We find that the existence of the carbon interconnections between nanorods for CMK-3 and between nanopipes for CMK-5 will reduce the excess uptakes of the noble gases, whereas the isosteric heats are favoured in the materials with interconnections. The carbon interconnections are not advantageous to the adsorption storage of pure gases, but they can improve the separation ability of Xe for gas-mixture adsorption. The effects of temperature and concentration on the Xe separation are investigated and it is shown that the selectivities of Xe in the CMK-5 materials are insensitive to the two factors. We also find that both gas storage and separation of CMK materials are comparable to IRMOF-1 and UMCM-1 metal-organic frameworks.  相似文献   

14.
Enhanced electrochemical resolution of anodic processes is possible in the presence of [N(nBu)4][B(C6F5)4], 1, as supporting electrolyte over that obtained in the presence of [N(nBu)4][PF6]. By changing the anion of the supporting electrolyte to a salt having [B(C6F5)4], anions, electrochemical processes of especially cationic analytes can benefit. Thus, the redox chemistry of 0.5 mmol dm−3 solutions of [Ru2(μ-FcCOO)4·(CH3CH2OH)2][PF6], 2, Fc = ferrocenyl, in CH2Cl2/[N(nBu)4][B(C6F5)4] were found to involve four well-resolved ferrocenyl-based electrochemical reversible redox processes as well as reduction of RuIII-RuII. At 1.0 mmol dm−3 concentrations of 2, or in the presence of [N(nBu)4][PF6], the four ferrocenyl processes coalesced into only two waves as a result of (Fc+)?() ion paring. Seventeen of the possible 18 one-electron transfer processes of the biscadmium trisphthalocyaninato complex [Cd2{Pc(C6H13)8}3], 3, could be observed in THF/[N(nBu)4][B(C6F5)4], but the electrochemical window of CH2Cl2/[N(nBu)4][B(C6F5)4] only allowed detection of 15 of these processes. Although reduction processes were unaffected, THF solvation leading to species such as (3n+)(THF)x with 1 ? n ? 4 and x ? 1 as well as ion pair formation of the type (3n+)?() prevented good resolution of oxidation processes. The CH2Cl2/[N(nBu)4][B(C6F5)4] system also allowed detection of reversible one-electron transfer ferrocenyl (Fc/Fc+) and ruthenocenyl-based (Rc/Rc+) processes for both enol and keto isomers of the β-diketone FcCOCH2CORc, 4, Rc = ruthenocenyl. In CH3CN/[N(nBu)4][PF6], the ruthenocenyl moiety was oxidised to a RuIV species.  相似文献   

15.
The kinetics of the light-driven Cl? uptake pump of Synechococcus R-2 (PCC 7942) were investigated. The kinetics of Cl? uptake were measured in BG-11 medium (pHo, 7·5; [K+]o, 0·35 mol m?3; [Na+]o, 18 mol m?3; [Cl?]o, 0·508 mol m?3) or modified media based on the above. Net36Cl? fluxes (?Cl?o,i) followed Michaelis-Menten kinetics and were stimulated by Na+ [18 mol m?3 Na+ BG-11 ?Cl?max= 3·29±0·60 (49) nmol m?2 s?1 versus Na+-free BG-11 ?Cl?max= 1·02±0·13 (54) nmol m?2 s?1] but the Km was not significantly different in the presence or absence of Na+ at pHo 10; the Km was lower, but not affected by the presence or absence of Na+ [Km = 22·3±3·54 (20) mmol m?3]. Na+ is a non-competitive activator of net ?Cl?o,i. High [K+]o (18 mol m?3) did not stimulate net ?Cl?o,i or change the Km in Na+-free medium. High [K+]o (18 mol m?3) added to Na+ BG-11 medium decreased net ?Cl?o,i [18 mol m?3K+ BG-11; ?Cl?max= 2·50±0·32 (20) nmol m?2 s?1 versus BG-11 medium; ?Cl?max= 3·35±0·56 (20) nmol m?2 s?1] but did not affect the Km 55·8±8·100 (40) mmol m?3]. Na+-stimulation of net ?Cl?o,i followed Michaelis-Menten kinetics up to 2–5 mol m?3 [Na+]o but higher concentrations were inhibitory. The Km for Na+-stimulation of net ?Cl?o,i [K1/2(Na+)] was different at 47 mmol m?3 [Cl?]o (K1/2[Na+] = 123±27 (37) mmol m?3]. Li+ was only about one-third as effective as Na+ in stimulating Cl? uptake but the activation constant was similar [K1/2(Li+) = 88±46 (16) mmol m?3]. Br? was a competitive inhibitor of Cl? uptake. The inhibition constant (Ki) was not significantly different in the presence and absence of Na+. The overall Ki was 297±23 (45) mmol m?3. The discrimination ratio of Cl? over Br? (δCl?/δBr?) was 6·38±0·92 (df = 147). Synechococcus has a single Na+-stimulated Cl? pump because the Km of the Cl? transporter and its discrimination between Cl? and Br? are not significantly different in the presence and absence of Na+. The Cl? pump is probably driven by ATP.  相似文献   

16.
This report presents a systematic investigation of the interactions of water molecule(s) with a series of amino acid cations (Gly+, Ala+, Val+, and Leu+), halogen anions (Cl?, Br?, BF4 ?, and PF6 ?), and clusters (GlyCl) n (n?=?1–5). The results reveal that H-bonds between amino acid ionic liquids (AAILs) and water molecules are crucial to the properties of aqueous solution of AAILs. The properties of AAIL in water solution depend on the alkyl chain of the amino acid cation, the size of the halogen anion, and the number of water molecules, which provides a certain theoretical basis for the design and application of new AAILs. A series of calculations for some different models showed that quadruple-GlyCl hydrate represents a basic unit for the Gly–water binary system, and can be employed as the simplest model for studying an AAIL–water cluster. On the basis of this model, the effects of water on the hygroscopicity, speed of solubility, viscosity, density, solution enthalpy, and polarity of the AAIL were also predicted. Most importantly, unlike traditional ILs, the novel GlyCl-type AAIL favors interaction of its cationic part, rather than its anionic part, with surrounding water molecules, thus amino acid cationic ILs expand the types of IL available, increasing the choice of ILs for different purposes. We hope that the application of this AAIL in many fields will lead to optimization of this class of compound and be of benefit to the environment.
Graphical Abstract Quadruple-GlyCl hydrate represents the basic unit for a GlyCl-water binary system, which can be employed as the simplest model for studying an amino acid ionic liquid (AAIL)-water cluster. The effects of available water on some properties of AAIL are predicted. GlyCl-type AAIL is a novel IL, which prefers its cationic part over its anionic part for interaction with surrounding water molecules. The properties of AAIL in water solution can be adjusted by varying the ion used and the solvent.
  相似文献   

17.

Background

Ionic liquid (IL) pretreatment has emerged as a promising technique that enables complete utilization of lignocellulosic biomass for biofuel production. However, imidazolium IL has recently been shown to exhibit inhibitory effect on cell growth and product formation of industrial microbes, such as oleaginous microorganisms. To date, the mechanism of this inhibition remains largely unknown.

Results

In this study, the feasibility of [Bmim][OAc]-pretreated rice straw hydrolysate as a substrate for microbial lipid production by Geotrichum fermentans, also known as Trichosporon fermentans, was evaluated. The residual [Bmim][OAc] present in the hydrolysate caused a reduction in biomass and lipid content (43.6 and 28.1%, respectively) of G. fermentans, compared with those of the control (7.8 g/L and 52.6%, respectively). Seven imidazolium ILs, [Emim][DEP], [Emim]Cl, [Amim]Cl, [Bmim]Cl, [Bzmim]Cl, [Emim][OAc], and [Bmim][OAc], capable of efficient pretreatment of lignocellulosic biomass were tested for their effects on the cell growth and lipid accumulation of G. fermentans to better understand the impact of imidazolium IL on the lipid production. All the ILs tested inhibited the cell growth and lipid accumulation. In addition, both the cation and the anion of IL contributed to IL toxicity. The side chain of IL cations showed a clear impact on toxicity. On examining IL anions, [OAc]? was found to be more toxic than those of [DEP]? and Cl?. IL exhibited its toxicity by inhibiting sugar consumption and key enzyme (malic enzyme and ATP-citrate lyase) activities of G. fermentans. Cell membrane permeability was also altered to different extents in the presence of various ILs. Scanning electron microscopy revealed that IL induces fibrous structure on the surface of G. fermentans cell, which might represent an adaptive mechanism of the yeast to IL.

Conclusions

This work gives some mechanistic insights into the impact of imidazolium IL on the cell growth and lipid accumulation of oleaginous yeast, which is important for IL integration in lignocellulosic biofuel production, especially for microbial lipid production.
  相似文献   

18.
Equilibrium studies of BMXD complexation with copper(II) and glycylglycine were performed by potentiometric and UV-visible titration. The equilibrium constants determined by potentiometry for the ternary system are: [LCu2P3+]/[LCu24+][P]=8.11(3), [LCu2HP4+]/[LCu2P3+][H+]=5.39(2), [LCu2H−1P2+][H+]/[LCu2P3+]=−6.33(2), [LCu2(OH)H−1P+][H+]/[LCu2H−1P2+]=−8.20(1) and [LCu2(OH)2HH−1P][H+]/[LCu2(OH)H−1P−1]=−10.33(3), which are in good agreement with the values determined by UV-visible titration. The species formed were confirmed by electrospray mass spectrometry. The association constants, determined by kinetic studies, for the association of the second molecule of glycylglycine with the LCu2P complex, for two ionic media, are 1.29 (KCl) and 1.27 (KNO3). These are in good agreement with the values determined by thermodynamic measurements 1.41 (KCl) and 1.26 (KNO3).  相似文献   

19.
20.
Single-walled carbon nanotubes (SWNTs) tend to aggregate to heavily tangled bundles due to the strong van der Waals attraction. Ionic liquids (ILs) are a kind of newly proposed solvents in which SWNT can be physically well dispersed. In this article, the cylindrical interface has been investigated by molecular dynamics simulation between IL of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) and an infinite long armchair (6,6) SWNT. The highly ordered structure of the cations and anions is elucidated by the simulation results. Two evident dense layers are found for both the cations and anions along the surface normal direction of the SWNT. In addition, we have observed two different orientation patterns of the cations in the first layer. In sublayer 1A, which is the nearest to the surface, the imidazolium rings of the cations prefer to be parallel to the surface, with a slight tilt angle less than 15°. In sublayer 1B, they tend to be perpendicular to the surface, with their butyl chains appearing in sublayer 1A. The [BF4] anions are found to cling to the nanotube surface with three fluoride atoms, also indicating a highly ordered orientation. The simulation results in this work provide a clue to understand the stabilisation and dispersion of SWNT bundles in ILs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号