首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Terminal tetraloops consisting of GNRA sequences are often found in biologically active large RNAs. The loops appear to contribute towards the organization of higher order RNA structures by forming specific tertiary interactions with their receptors. Group IC3 introns which possess a GAAA loop in the L2 region often have a phylogenetically conserved motif in their P8 domains. In this report, we show that this conserved motif stands as a new class of receptor that distinguishes the sequences of GNRA loops less stringently than previously known receptors. The motif can functionally substitute an 11 nt motif receptor in the Tetrahymena ribozyme. Its structural and functional similarity to one class of synthetic receptors obtained from in vitro selection is observed.  相似文献   

2.
GNRA tetraloops make a U-turn.   总被引:8,自引:3,他引:5       下载免费PDF全文
The U-turn (uridine turn) is an RNA structural motif that contains a change in backbone direction stabilized by specific interactions across the bend. It was first identified in the anticodon loop and the T-loop of yeast tRNA(Phe) (Quigley & Rich, 1976, Science 194:796-806) and has recently also been found in the crystal structure of the hammerhead ribozyme (Pley HW, Flaherty KM, McKay DB, 1994a, Nature 372:68-74). These U-turn motifs follow a UNR consensus sequence (where N is any nucleotide and R is G or A). Here we report that the frequently occurring GNRA tetraloops also contain a U-turn motif, and we discuss the role of U-turns as abundant tertiary structural motifs in RNA.  相似文献   

3.
GNRA tetraloops (N is A, C, G, or U; R is A or G) are basic building blocks of RNA structure that often interact with proteins or other RNA structural elements. Understanding sequence-dependent structural variation among different GNRA tetraloops is an important step toward elucidating the molecular basis of specific GNRA tetraloop recognition by proteins and RNAs. Details of the geometry and hydration of this motif have been based on high-resolution crystallographic structures of the GRRA subset of tetraloops; less is known about the GYRA subset (Y is C or U). We report here the structure of a GUAA tetraloop determined to 1.4 A resolution to better define these details and any distinctive features of GYRA tetraloops. The tetraloop is part of a 27-nt structure that mimics the universal sarcin/ricin loop from Escherichia coli 23S ribosomal RNA in which a GUAA tetraloop replaces the conserved GAGA tetraloop. The adenosines of the GUAA tetraloop form an intermolecular contact that is a commonplace RNA tertiary interaction called an A-minor motif. This is the first structure to reveal in great detail the geometry and hydration of a GUAA tetraloop and an A-minor motif. Comparison of tetraloop structures shows a common backbone geometry for each of the eight possible tetraloop sequences and suggests a common hydration. After backbone atom superposition, equivalent bases from different tetraloops unexpectedly depart from coplanarity by as much as 48 degrees. This variation displaces the functional groups of tetraloops implicated in protein and RNA binding, providing a recognition feature.  相似文献   

4.
RNA is known to fold into a variety of structural elements, many of which have sufficient sequence complexity to make the thermodynamic study of each possible variant impractical. We previously reported a method for isolating stable and unstable RNA sequences from combinatorial libraries using temperature gradient gel electrophoresis (TGGE). This method was used herein to analyze a six-nucleotide RNA hairpin loop library. Three rounds of in vitro selection were performed using TGGE, and unusually stable RNAs were identified by cloning and sequencing. Known stable tetraloops were found, including sequences belonging to the UNCG motif closed by a CG base pair, and the CUUG motif closed by a GC base pair. In addition, unknown tetraloops were found that were nearly as stable as cUNCGg, including sequences related through substitution of the U with a C (Y), the C with an A (M), or both. These substitutions allow hydrogen bonding and stacking interactions in the UNCG loop to be maintained. Thermodynamic analysis of YNMG and variant loops confirmed optimal stability with Y at position 1 and M at position 3. Similarity in structure and stability among YNMG loops was further supported by deoxyribose substitution, CD, and NMR experiments. A conserved tertiary interaction in 16S rRNA exists between a YAMG loop at position 343 and two adenines in the loop at position 159 (Escherichia coli numbering). NMR and functional group substitution experiments suggest that YNAG loops in particular have enhanced flexibility, which allows the tertiary interaction to be maintained with diverse loop sequences at position 159. Taken together, these results support the existence of an extended family of UNCG-like tetraloops with the motif cYNMGg that are thermodynamically stable and structurally similar and can engage in tertiary interactions in large RNA molecules.  相似文献   

5.
Picornavirus internal ribosome entry site (IRES) elements direct cap-independent internal initiation of protein synthesis within mammalian cells. These RNA elements (about 450 nt) contain extensive secondary structure including a hairpin loop with a conserved GNRA motif. Such loops are important in RNA-RNA and RNA-protein interactions. Plasmids that express dicistronic mRNAs of the structure GUS/IRES/HOOK have been constructed. The HOOK sequence encodes a cell-surface-targeted protein (sFv); the translation of this open reading frame within mammalian cells from these dicistronic mRNAs requires a functional IRES element. Cells that express the sFv can be selected from nonexpressing cells. A pool of up to 256 mutant encephalomyocarditis virus IRES elements was generated by converting the wild-type hairpin loop sequence (GCGA) to NNNN. Following transfection of this pool of mutants into COS-7 cells, plasmids were recovered from selected sFv-expressing cells. These DNAs were amplified in Escherichia coli and transfected again into COS-7 cells for further cycles to enrich for plasmids encoding functional IRES elements. The sequence of individual selected IRES elements was determined. All functional IRES elements had a tetraloop with a 3' terminal A residue. Optimal IRES activity, assayed in vitro and within cells, was obtained from plasmids encoding an IRES with the hairpin loop sequence fitting a RNRA consensus. In contrast, IRES elements containing YCYA tetraloops were severely defective.  相似文献   

6.
A hairpin loop and an oligonucleotide bound to the loop form one-half of the pseudoknot structure. We have designed an allosteric hammerhead ribozyme, which is activated by the introduction of this motif by using a short complementary oligonucleotide as a cofactor. Stem II of the hammerhead ribozyme was substituted with a non-self-complementary loop sequence (loop II) to abolish the cleavage activity. The new ribozyme had almost no cleavage activity of the target RNA. However, it exhibited the cleavage activity in the presence of a cofactor oligoribonucleotide, which is complementary to loop II of the ribozyme. The activity is assumed to be derived from the formation of a pseudo-stem structure between the cofactor oligonucleotide and loop II. The structure including the loop may be similar to the pseudo-half-knot structure. The activation efficiencies of the cofactor oligonucleotides were decreased as the lengths of the oligonucleotides increased, and the ribozyme with a longer loop II was more active than that with a short loop II. Oligoribonucleotides with 3'-dangling purine bases served as efficient cofactors of the ribozyme, and a 2'-O-methyloligonucleotide enhanced the cleavage activity of the ribozyme most efficiently, by as much as about 750-fold as compared with that in the absence of the oligonucleotide. Cofactor oligonucleotides with a cytidine base at the 3'-end also activated a ribozyme with the G10.1.G11.1 mutation, which eliminates the cleavage activity in the wild-type. The binding sites of the oligonucleotide were identified by photo-crosslinking experiments and were found to be the predicted sites in the loop. This is the first report of a design aimed at positively controlling the activity of ribozymes by employing a structural motif. This method can be applied to control the activities of other functional RNAs with hairpin loops.  相似文献   

7.
Experimental and computational studies of the G[UUCG]C RNA tetraloop   总被引:7,自引:0,他引:7  
In prokaryotic ribosomal RNAs, most UUCG tetraloops are closed by a C-G base-pair. However, this preference is greatly reduced in eukaryotic rRNA species where many UUCG tetraloops are closed by G-C base-pairs. Here, biophysical properties of the C[UUCG]G and G[UUCG]C tetraloops are compared, using experimental and computational methods. Thermal denaturation experiments are used to derive thermodynamic parameters for the wild-type G[UUCG]C tetraloop and variants containing single deoxy substitutions in the loop. A comparison with analogous experiments on the C[UUCG]G motif shows that the two RNA species exhibit similar patterns in response to the substitutions, suggesting that their loop structures are similar. This conclusion is supported by NMR data that suggest that the essential UUCG loop structure is maintained in both tetraloops. However, NMR results show that the G[UUCG]C loop structure is disrupted prior to melting of the stem; this behavior is in contrast to the two-state behavior of the C[UUCG]G molecule. Stochastic dynamics simulations using the GB/SA continuum solvation model, run as a function of temperature, show rare conformational transitions in several G[UUCG]C simulations. These results lead to the conclusion that substitution of a G-C for a C-G closing base-pair increases the intrinsic flexibility of the UUCG loop.  相似文献   

8.
Release 2.0.1 of the Structural Classification of RNA (SCOR) database, http://scor.lbl.gov, contains a classification of the internal and hairpin loops in a comprehensive collection of 497 NMR and X-ray RNA structures. This report discusses findings of the classification that have not been reported previously. The SCOR database contains multiple examples of a newly described RNA motif, the extruded helical single strand. Internal loop base triples are classified in SCOR according to their three-dimensional context. These internal loop triples contain several examples of a frequently found motif, the minor groove AGC triple. SCOR also presents the predominant and alternate conformations of hairpin loops, as shown in the most well represented tetraloops, with consensus sequences GNRA, UNCG and ANYA. The ubiquity of the GNRA hairpin turn motif is illustrated by its presence in complex internal loops.  相似文献   

9.
Within the hairpin ribozyme, structural elements required for formation of the active tertiary structure are localized in two independently folding domains, each consisting of an internal loop flanked by helical elements. Here, we present results of a systematic examination of the relationship between the structure of the helical elements and the ability of the RNA to form the catalytically active tertiary structure. Deletions and mutational analyses indicate that helix 1 (H1) in domain A can be entirely eliminated, while segments of helices 2, 3, and 4 can also be deleted. From these results, we derive a new active minimal ribozyme that contains three helical elements, an internal loop, and a terminal loop. A three-dimensional model of this truncated ribozyme was generated using MC-SYM, and confirms that the catalytic core of the minimized construct can adopt a tertiary structure that is very similar to that of the nontruncated version. A new strategy is described to study the functional importance of various residues and chemical groups and to identify specific interdomain interactions. This approach uses two physically separated and truncated domains derived from the minimal motif.  相似文献   

10.
Although tetraloops are one of the most frequently occurring secondary structure motifs in RNA, less than one-third of the 30 most frequently occurring RNA tetraloops have been thermodynamically characterized. Therefore, 24 stem–loop sequences containing common tetraloops were optically melted, and the thermodynamic parameters ΔH°, ΔS°, ΔG°37, and TM for each stem–loop were determined. These new experimental values, on average, are 0.7 kcal/mol different from the values predicted for these tetraloops using the model proposed by Vecenie CJ, Morrow CV, Zyra A, Serra MJ. 2006. Biochemistry 45: 1400–1407. The data for the 24 tetraloops reported here were then combined with the data for 28 tetraloops that were published previously. A new model, independent of terminal mismatch data, was derived to predict the free energy contribution of previously unmeasured tetraloops. The average absolute difference between the measured values and the values predicted using this proposed model is 0.4 kcal/mol. This new experimental data and updated predictive model allow for more accurate calculations of the free energy of RNA stem–loops containing tetraloops and, furthermore, should allow for improved prediction of secondary structure from sequence. It was also shown that tetraloops within the sequence 5′-GCCNNNNGGC-3′ are, on average, 0.6 kcal/mol more stable than the same tetraloop within the sequence 5′-GGCNNNNGCC-3′. More systemic studies are required to determine the full extent of non-nearest-neighbor effects on tetraloop stability.  相似文献   

11.
Osmolytes have the potential to affect the stability of secondary structure motifs and alter preferences for conserved nucleic acid sequences in the cell. To contribute to the understanding of the in vivo function of RNA we observed the effects of different classes of osmolytes on the UNCG tetraloop motif. UNCG tetraloops are the most common and stable of the RNA tetraloops and are nucleation sites for RNA folding. They also have a significant thermodynamic preference for a CG closing base pair. The thermal denaturation of model hairpins containing UUCG loops was monitored using UV-Vis spectroscopy in the presence of osmolytes with different chemical properties. Interestingly, all of the osmolytes tested destabilized the hairpins, but all had little effect on the thermodynamic preference for a CG base pair, except for polyethylene glycol (PEG) 200. PEG 200 destabilized the loop with the CG closing base pair relative to the loop with a GC closing base pair. The destabilization was linear with increasing concentrations of PEG 200, and the slope of this relationship was not perturbed by changes in the hairpin stem outside of the closing pair. This result suggests that in the presence of PEG 200, the UUCG loop with a GC closing base pair may retain some preferential interactions with the cosolute that are lost in the presence of the CG closing base pair. These results reveal that relatively small structural changes may influence how osmolytes tune the stability, and thus the function of a secondary structure motif in vivo.  相似文献   

12.
Nakano M  Moody EM  Liang J  Bevilacqua PC 《Biochemistry》2002,41(48):14281-14292
Hairpins play important roles in the function of DNA, forming cruciforms and affecting processes such as replication and recombination. Temperature gradient gel electrophoresis (TGGE) and in vitro selection have been used to isolate thermodynamically stable DNA hairpins from a six-nucleotide random library. The TGGE-selection process was optimized such that known stable DNA tetraloops were recovered, and the selection appears to be exhaustive. In the selection, four families of exceptionally stable DNA loops were identified: d(cGNNAg), d(cGNABg), d(cCNNGg), and d(gCNNGc). (Lowercase denotes the closing base pair; N = A, C, G, or T; and B = C, G, or T.) It appears that the known stable d(cGNAg) triloop motif can be embedded into a tetraloop, with the extra nucleotide inserted into either the middle of the loop, d(cGNNAg), or at the 3'-end of the loop, d(cGNABg). For d(cGNNAg) and d(cGNABg), a CG closing base pair was strongly preferred over a GC, with DeltaDeltaG degrees (37) approximately 2 kcal/mol. Members of the two families, d(cCNNGg) and d(gCNNGc), are similar in stability. The loop sequences and closing base pairs identified for exceptionally stable DNA tetraloops show many similarities to those known for exceptionally stable RNA tetraloops. These data provide an expanded set of thermodynamic rules for the formation of tetraloops in DNA.  相似文献   

13.
Assembly of the human signal recognition particle (SRP) requires SRP19 protein to bind to helices 6 and 8 of SRP RNA. In the present study, structure of a 29-mer RNA composing the SRP19 binding site in helix 6 was determined by NMR spectroscopy. The two A:C mismatches were continuously stacked to each other and formed wobble type A:C base pairs. The GGAG tetraloop in helix 6 was found to adopt a similar conformation to that of GNRA tetraloop, suggesting that these tetraloops are included in an extensive new motif GNRR. Compared with the crystal structure of helix 6 in complex with SRP19 determined previously, the GGAG tetraloop in the complex was found to adopt a similar conformation to the free form, although the loop structure becomes more open upon SRP19 binding. Thus, SRP19 is thought to recognize the overall fold of the GGAG loop.  相似文献   

14.
RNA tetraloops are common secondary structural motifs in many RNAs, especially ribosomal RNAs. There are few studies of small molecule recognition of RNA tetraloops although tetraloops are known to interact with RNA receptors and proteins, and to form nucleation sites for RNA folding. In this paper, we investigate the binding of neomycin, kanamycin, 2,4-diaminoquinazoline, quinacrine, and an aminoacridine derivative (AD1) to a GAAA tetraloop using fluorescence spectroscopy. We have found that AD1 and quinacrine bind to the GAAA tetraloop with the highest affinity of the molecules examined. The equilibrium dissociation constant of the AD1-GAAA tetraloop complex was determined to be 1.6 microM. RNase I and lead acetate footprinting experiments suggested that AD1 binds to the junction between the loop and stem of the GAAA tetraloop.  相似文献   

15.
Hampel KJ  Burke JM 《Biochemistry》2001,40(12):3723-3729
The catalysis of site-specific RNA cleavage and ligation by the hairpin ribozyme requires the formation of a tertiary interaction between two independently folded internal loop domains, A and B. Within the B domain, a tertiary structure has been identified, known as the loop E motif, that has been observed in many naturally occurring RNAs. One characteristic of this motif is a partial cross-strand stack of a G residue on a U residue. In a few cases, including loop B of the hairpin ribozyme, this unusual arrangement gives rise to photoreactivity. In the hairpin, G21 and U42 can be UV cross-linked. Here we show that docking of the two domains correlates very strongly with a loss of UV reactivity of these bases. The rate of the loss of photoreactivity during folding is in close agreement with the kinetics of interdomain docking as determined by hydroxyl-radical footprinting and fluorescence resonance energy transfer (FRET). Fixing the structure of the complex in the cross-linked form results in an inability of the two domains to dock and catalyze the cleavage reaction, suggesting that the conformational change is essential for catalysis.  相似文献   

16.
Specific recognitions of GNRA tetraloops by small helical receptors are among the most widespread long-range packing interactions in large ribozymes. However, in contrast to GYRA and GAAA tetraloops, very few GNRA/receptor interactions have yet been identified to involve GGAA tetraloops in nature. A novel in vitro selection scheme based on a rigid self-assembling tectoRNA scaffold designed for isolation of intermolecular interactions with A-minor motifs has yielded new GGAA tetraloop-binding receptors with affinity in the nanomolar range. One of the selected receptors is a novel 12 nt RNA motif, (CCUGUG ... AUCUGG), that recognizes GGAA tetraloop hairpin with a remarkable specificity and affinity. Its physical and chemical characteristics are comparable to those of the well-studied '11nt' GAAA tetraloop receptor motif. A second less specific motif (CCCAGCCC ... GAUAGGG) binds GGRA tetraloops and appears to be related to group IC3 tetraloop receptors. Mutational, thermodynamic and comparative structural analysis suggests that natural and in vitro selected GNRA receptors can essentially be grouped in two major classes of GNRA binders. New insights about the evolution, recognition and structural modularity of GNRA and A-minor RNA-RNA interactions are proposed.  相似文献   

17.
A classical genetic strategy has been combined with an in vitro selection method to search for functional interactions between the two domains of the hairpin ribozyme. G(21) is located within internal loop B; it is proposed to form a sheared base pair with A(43) across loop B and to bind a Mg(2+) ion. Both nucleotides are important for ribozyme function, and G.A sheared base pairs are a very widespread motif in structured RNA. We took advantage of its presence in the hairpin ribozyme to study its functional role. Pseudorevertants, in which the loss of G(21) was compensated by mutations at other positions, were isolated by in vitro selection. The vast majority of G(21) revertants contained substitutions within domain A, pointing to functional communication between specific sites within the two domains of the hairpin ribozyme. The possibility of a direct or redundant contacts is supported by electrophoretic mobility shift studies showing that a complex formed between domain B of the ribozyme and the substrate was disrupted and restored by base substitutions that have analogous effects on catalytic activity. The functional significance of this complex, the role of the nucleotides involved, and the basis for magnesium ion requirement is discussed.  相似文献   

18.
To develop molecular tools for the detection and control of RNA molecules whose functions rely on their 3D structures, we have devised a selection system to isolate novel RNA motifs that interact with a target RNA structure within a given structural context. In this system, a GAAA tetraloop and its specific receptor motif (11-ntR) from an artificial RNA ligase ribozyme with modular architecture (the DSL ribozyme) were replaced with a target structure and random sequence, respectively. Motifs recognizing the target structure can be identified by in vitro selection based on ribozyme activity. A model selection targeting GAAA-loop successfully identified motifs previously known as GAAA-loop receptors. In addition, a new selection targeting a C-loop motif also generated novel motifs that interact with this structure. Biochemical analysis of one of the C-loop receptor motifs revealed that it could also function as an independent structural unit.  相似文献   

19.
Zhao Q  Huang HC  Nagaswamy U  Xia Y  Gao X  Fox GE 《Biopolymers》2012,97(8):617-628
The structures of four small RNAs each containing a different version of the UNAC loop were determined in solution using NMR spectroscopy and restrained molecular dynamics. The UMAC tetraloops (where M is A or C) exhibited a typical GNRA fold including at least one hydrogen bond between the first U and fourth C. In contrast, UGAC and UUAC tetraloops have a different orientation of the first and fourth residues, such that they do not closely mimic the GNRA fold. Although the UMAC tetraloops are excellent structural mimics of the GNRA tetraloop backbone, sequence comparisons typically do not reveal co‐variation between the two loop types. The limited covariation is attributed to differences in the location of potential hydrogen bond donors and acceptors as a result of the replacement of the terminal A of GNRA with C in the UMAC version. Thus, UMAC loops do not readily form the common GNRA tetraloop‐receptor interaction. The loop at positions 863‐866 in E. coli 16S ribosomal RNA appears to be a major exception. However, in this case the GNRA loop does not in fact engage in the usual base to backbone tertiary interactions. In summary, UMAC loops are not just an alternative sequence version of the GNRA loop family, but instead they expand the types of interactions, or lack thereof, that are possible. From a synthetic biology perspective their inclusion in an artificial RNA may allow the establishment of a stable loop structure while minimizing unwanted long range interactions or permitting alternative long‐range interactions. © 2012 Wiley Periodicals, Inc. Biopolymers 97: 617–628, 2012.  相似文献   

20.
The hammerhead ribozyme is a small catalytic RNA motif capable of endonucleolytic (self-) cleavage. It is composed of a catalytic core of conserved nucleotides flanked by three helices, two of which form essential tertiary interactions for fast self-scission under physiological conditions. Originally discovered in subviral plant pathogens, its presence in several eukaryotic genomes has been reported since. More recently, this catalytic RNA motif has been shown to reside in a large number of genomes. We review the different approaches in discovering these new hammerhead ribozyme sequences and discuss possible biological functions of the genomic motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号