首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transport of long-chain fatty acids into rat adipocytes was previously shown to be inhibited by the reactive derivative sulfosuccinimidyl oleate consequent to its binding to a membrane protein FAT, which is homologous to CD36. In this report, the ability of the purified protein to bind native fatty acids was investigated. CD36 was isolated from rat adipocytes by phase partitioning into Triton X-114 followed by chromatography on DEAE and then on wheat germ agglutinin. Fatty acid binding was determined by incubating CD36, solubilized in buffer containing 0.1 Triton X-100, with fatty acids at 37°C, and then by adsorbing the unbound ligand with Lipidex 1,000 at 0°C. Bovine serum albumin was used as a positive control and gelatin, a protein that does not bind fatty acids, as a negative control. Measurements with albumin yielded reproducible binding values which were not altered by the presence of 0.1% Triton X-100. Under the same conditions, gelatin yielded reproducibly negative measurements that did not differ significantly from zero. CD36 bound various long-chain fatty acids at low ligand to protein ratios. Warming the protein-FA-Lipidex mixture to 37°C removed the FA off the protein. Thus, binding was reversible and distinct from the palmitoylation of the protein known to occur on an extracellular domain. Comparison of the predicted secondary sequence of CD36 with that of human muscle fatty acid binding protein suggested that a potential binding site for the fatty acid on CD36 may exist in its extracellular segment between residues 127 and 279. Received: 17 January 1996/Revised: 8 May 1996  相似文献   

2.
SR-B1 belongs to the class B scavenger receptor, or CD36 super family. SR-B1 and CD36 share an affinity for a wide array of ligands. Although they exhibit similar ligand binding specificity, SR-B1 and CD36 have some very specific lipid transport functions. Whereas SR-B1 primarily facilitates the selective delivery of cholesteryl esters (CEs) and cholesterol from HDL particles to the liver and non-placental steroidogenic tissues, as well as participating in cholesterol efflux from cells, CD36 primarily mediates the uptake of long-chain fatty acids in high fatty acid-requiring organs such as the heart, skeletal muscle and adipose tissue. However, CD36 also mediates cholesterol efflux and facilitates selective lipoprotein-CE delivery, although less efficiently than SR-B1. Interestingly, the ability or efficiency of SR-B1 to mediate fatty acid uptake has not been reported. In this paper, using overexpression and siRNA-mediated knockdown of SR-B1, we show that SR-B1 possesses the ability to facilitate fatty acid uptake. Moreover, this function is not blocked by BLT-1, a specific chemical inhibitor of HDL-CE uptake activity of SR-B1, nor by sulfo-N-succinimidyl oleate, which inhibits fatty acid uptake by CD36. Attenuated fatty acid uptake was also observed in primary adipocytes isolated from SR-B1 knockout mice. In conclusion, facilitation of fatty acid uptake is an additional function that is mediated by SR-B1.  相似文献   

3.
Myocardial uptake of long-chain fatty acids largely occurs by facilitated diffusion, involving primarily the membrane-associated protein CD36. Other putative fatty acid transporters, such as FABPpm, FATP1 and FATP4, also play a role, but their quantitative contribution is much smaller or their involvement is rather permissive. Besides its sarcolemmal localization, CD36 is also present in intracellular compartments (endosomes). CD36 cycles between both pools via vesicle-mediated trafficking, and the relative distribution between endosomes versus sarcolemma determines the rate of cardiac fatty acid uptake. A net translocation of CD36 to the sarcolemma is induced by various stimuli, in particular hormones like insulin and myocyte contractions, so as to allow a proper coordination of the rate of fatty acid uptake with rapid fluctuations in myocardial energy needs. Furthermore, changes in cardiac fatty acid utilization that occur in both acute and chronic cardiac disease appear to be accompanied by concomitant changes in the sarcolemmal presence of CD36. Studies in various animal and cell models suggest that interventions aimed at modulating the sarcolemmal presence or functioning of CD36 hold promise as therapy to rectify aberrant rates of fatty acid uptake in order to fight cardiac metabolic remodeling and restore proper contractile function. In this review we discuss our current knowledge about the role of CD36 in cardiac fatty acid uptake and metabolism in health and disease with focus on the regulation of the subcellular trafficking of CD36 and its selective modulation as therapeutic approach for cardiac disease. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.  相似文献   

4.
FAT/CD36 is a transmembrane protein that is thought to facilitate cellular long-chain fatty acid uptake. However, surprisingly little is known about the localization of FAT/CD36 in human skeletal muscle. By confocal immunofluorescence microscopy, we demonstrate high FAT/CD36 expression in endothelial cells and weaker but significant FAT/CD36 expression in sarcolemma in human skeletal muscle. No apparent intracellular staining was observed in the muscle cells. There are indications in the literature that caveolae may be involved in the uptake of fatty acids, possibly as regulators of FAT/CD36 or other fatty acid transporters. We show that in sarcolemma, FAT/CD36 colocalizes with the muscle-specific caveolae marker protein caveolin-3, suggesting that caveolae may regulate cellular fatty acid uptake by FAT/CD36. Furthermore, we provide evidence that FAT/CD36 expression is significantly higher in type 1 compared with type 2 fibers, whereas caveolin-3 expression is significantly higher in type 2 fibers than in type 1 fibers.  相似文献   

5.
The lack of fatty aldehyde dehydrogenase function in Sjögren Larsson Syndrome (SLS) patient cells not only impairs the conversion of fatty aldehydes into their corresponding fatty acid but also has an effect on connected pathways. Alteration of the lipid profile in these cells is thought to be responsible for severe symptoms such as ichtyosis, mental retardation, and spasticity. Here we present a novel approach to examine fatty aldehyde metabolism in a time-dependent manner by measuring pyrene-labeled fatty aldehyde, fatty alcohol, fatty acid, and alkylglycerol in the culture medium of living cells using HPLC separation and fluorescence detection. Our results show that in fibroblasts from SLS patients, fatty aldehyde is not accumulating but is converted readily into fatty alcohol. In control cells, in contrast, exclusively the corresponding fatty acid is formed. SLS patient cells did not display a hypersensitivity toward hexadecanal or hexadecanol, but 3-fold lower concentrations of the fatty alcohol than the corresponding fatty aldehyde were needed to induce toxicity in SLS patient and in control cells.  相似文献   

6.
The clustering of risk factors including dyslipidemia, hyperglycemia, and hypertension is highly atherogenic along with the excess of remnants from triglyceride (TG)-rich lipoproteins. CD36 is involved in the uptake of long-chain fatty acids (LCFAs) in muscles and small intestines. Patients with CD36 deficiency (CD36-D) have postprandial hypertriglyceridemia, insulin resistance, and hypertension. To investigate the underlying mechanism of postprandial hypertriglyceridemia in CD36-D, we analyzed lipoprotein profiles of CD36-D patients and CD36-knockout (CD36-KO) mice after oral fat loading (OFL). In CD36-D patients, plasma triglycerides, apolipoprotein B-48 (apoB-48), free fatty acids (FFAs), and free glycerol levels were much higher after OFL than those of controls, along with increases in chylomicron (CM) remnants and small dense low-density lipoprotein (sdLDL) particles. In CD36-KO mice, lipoproteins smaller than CM in size in plasma and intestinal lymph were markedly increased after OFL and mRNA levels of genes involved in FFA biosynthesis, such as fatty acid binding protein (FABP)-1 and FAS, were significantly increased. These results suggest that CD36-D might increase atherosclerotic risk by enhancing plasma level of CM remnants due to the increased synthesis of lipoproteins smaller than CM in size in the intestine.  相似文献   

7.
Fatty acid transport proteins are present on the plasma membrane and are involved in the uptake of long-chain fatty acids into skeletal muscle. The present study determined whether acute endurance exercise increased the plasma membrane content of fatty acid transport proteins in rat and human skeletal muscle and whether the increase was accompanied by an increase in long-chain fatty acid transport in rat skeletal muscle. Sixteen subjects cycled for 120 min at ~60 ± 2% Vo(2) peak. Two skeletal muscle biopsies were taken at rest and again following cycling. In a parallel study, eight Sprague-Dawley rats ran for 120 min at 20 m/min, whereas eight rats acted as nonrunning controls. Giant sarcolemmal vesicles were prepared, and protein content of FAT/CD36 and FABPpm was measured in human and rat vesicles and whole muscle homogenate. Palmitate uptake was measured in the rat vesicles. In human muscle, plasma membrane FAT/CD36 and FABPpm protein contents increased 75 and 20%, respectively, following 120 min of exercise. In rat muscle, plasma membrane FAT/CD36 and FABPpm increased 20 and 30%, respectively, and correlated with a 30% increase in palmitate transport following 120 min of running. These data suggest that the translocation of FAT/CD36 and FABPpm to the plasma membrane in rat skeletal muscle is related to the increase in fatty acid transport and oxidation that occurs with endurance running. This study is also the first to demonstrate that endurance cycling induces an increase in plasma membrane FAT/CD36 and FABPpm content in human skeletal muscle, which is predicted to increase fatty acid transport.  相似文献   

8.
There is substantial molecular, biochemical and physiologic evidence that long-chain fatty acid transport involves a protein-mediated process. A number of fatty acid transport proteins have been identified, and for unknown reasons, some of these are coexpressed in the same tissues. In muscle and heart FAT/CD36 and FABPpm appear to be key transporters. Both proteins are regulated acutely (within minutes) and chronically (hours to days) by selected physiologic stimuli (insulin, AMP kinase activation). Acute regulation involves the translocation of FAT/CD36 by insulin, muscle contraction and AMP kinase activation, while FABPpm is induced to translocate by muscle contraction and AMP kinase activation, but not by insulin. Protein expression ofFAT/CD36 and FABPpm is regulated by prolonged AMP kinase activation (heart) or increased muscle contraction. Prolonged insulin exposure increases the expression of FAT/CD36 but not FABPpm. Trafficking of fatty acid transporters between an intracellular compartment(s) and the plasma membrane is altered in insulin-resistant skeletal muscle, as some FAT/CD36 is permanently relocated to plasma membrane, thereby contributing to insulin resistance due to the increased influx of fatty acids into muscle cells. Studies in FAT/CD36 null mice have revealed that this transporter is key to regulating the increase in the rate of fatty acid metabolism in heart and skeletal muscle. It appears based on a number of experiments that FAT/CD36 and FABPpm may collaborate to increase the rates of fatty acid transport, as these proteins co-immunoprecipitate.  相似文献   

9.
Recent studies have shown that CD36 plays important roles as a major scavenger receptor for oxidized low-density lipoproteins and as a crucial transporter for long-chain fatty acids. CD36 deficiency might be associated with insulin resistance and abnormal dynamics of long-chain fatty acids. Endothelin-1 (ET-1), which is synthesized and secreted by vascular endothelial cells, is the most potent endogenous vasoconstrictor known and also stimulates the proliferation of vascular smooth muscle cells (VSMCs) and thus is believed to play an important role in the development of various circulatory disorders, including hypertension and atherosclerosis. The aim of the present study was to investigate the regulatory effect of ET-1 on CD36 expression in cultured VSMCs. VSMCs were treated for different times (0-24 h) with a fixed concentration (100 nM) of ET-1 or with different concentrations (0-100 nM) for a fixed time (24 h); then CD36 expression was determined using Western blots. CD36 expression was significantly decreased by ET in a time- and dose-dependent manner. This inhibitory effect was prevented by the ET(A) receptor antagonist BQ-610 (10 microM) but not the ET(B) receptor antagonist BQ-788 (10 microM). To further explore the underlying mechanisms of ET-1 action, we examined the involvement of the tyrosine kinase-mediated and MAPK-mediated pathways. The inhibitory effect of ET-1 on CD36 protein expression was blocked by inhibition of tyrosine kinase activation by use of genistein (100 microM) and by the ERK inhibitor PD-98059 (75 microM) but not by the p38 MAPK inhibitor SB-203580 (20 microM). In conclusion, we have demonstrated that ET-1, acting via the ET(A) receptor, suppresses CD36 protein expression in VSMCs by activation of the tyrosine kinase and ERK pathways.  相似文献   

10.
Fatty acids in the epidermis can be incorporated into complex lipids or exist in a free form, and they are crucial to proper functions of the epidermis and its appendages, such as sebaceous glands. Epidermal fatty acids can be synthesized de novo by keratinocytes or taken up from extracutaneous sources in a process that likely involves protein transporters. Several proteins that are expressed in the epidermis have been proposed to facilitate the uptake of long-chain fatty acids (LCFA) in mammalian cells, including fatty acid translocase/CD36, fatty acid binding protein, and fatty acid transport protein (FATP)/very long-chain acyl-CoA synthetase. In this review, we will discuss the mechanisms by which these candidate transporters facilitate the uptake of fatty acids. We will then discuss the clinical implications of defects in these transporters and relevant animal models, including the FATP4 animal models and ichthyosis prematurity syndrome, a congenital ichthyosis caused by FATP4 deficiency. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

11.
Primary long-chain fatty alcohols are present in a variety of phyla. In eukaryotes, the production of fatty alcohols is catalyzed by fatty acyl-CoA reductase (FAR) enzymes that convert fatty acyl-CoAs or acyl-ACPs into fatty alcohols. Here, we report on the biochemical properties of a purified plant FAR, Arabidopsis FAR6 (AtFAR6). In vitro assays show that the enzyme preferentially uses 16 carbon acyl-chains as substrates and produces predominantly fatty alcohols. Free fatty acids and fatty aldehyde intermediates can be released from the enzyme, in particular with suboptimal chain lengths and concentrations of the substrates. Both acyl-CoA and acyl-ACP could serve as substrates. Transient expression experiments in Nicotiana tabacum showed that AtFAR6 is a chloroplast localized FAR. In addition, expression of full length AtFAR6 in Nicotiana benthamiana leaves resulted in the production of C16:0-alcohol within this organelle. Finally, a GUS reporter gene fusion with the AtFAR6 promoter showed that the AtFAR6 gene is expressed in various tissues of the plant with a distinct pattern compared to that of other Arabidopsis FARs, suggesting specialized functions in planta.  相似文献   

12.
Fatty acid translocase (FAT)/CD36 is one of several putative plasma membrane long-chain fatty acid (LCFA) transport proteins; however, its role in intestinal absorption of LCFA is unknown. We hypothesized that FAT/CD36 would be differentially expressed along the longitudinal axis of the gut and during intestinal development, suggesting specificity of function. We found that intestinal mucosal FAT/CD36 mRNA levels varied by anatomic location along the longitudinal gut axis: stomach 45 +/- 7, duodenum 173 +/- 29, jejunum 238 +/- 17, ileum 117 +/- 14, and colon 9 +/- 1% (means +/- SE with 18S mRNA as control). FAT/CD36 protein levels were also higher in proximal compared with distal intestinal mucosa. Mucosal FAT/CD36 mRNA was also regulated during intestinal maturation, with a fourfold increase from neonatal to adult animals. In addition, FAT/CD36 mRNA levels and enterocyte LCFA uptake were rapidly downregulated by intraduodenal oleate infusion. These findings suggest that FAT/CD36 plays a role in the uptake of LCFA by small intestinal enterocytes. This may have important implications in understanding fatty acid absorption in human physiological and pathophysiological conditions.  相似文献   

13.
肌肉(骨骼肌)组织对脂肪酸的利用水平是影响机体能量稳态的关键因素.肌肉摄取的长链脂肪酸(long chain fatty acids,LCFAs)主要依赖细胞膜载体蛋白协助的跨膜转运过程.近年来,一系列与脂肪酸转运相关的膜蛋白被相继克隆鉴定,其中在肌肉中大量表达的有脂肪酸转运蛋白-1(fatty acid transport protein-1,FATP-1)、膜脂肪酸结合蛋白(plasma membrane fatty acid binding protein,FABPpm)、脂肪酸转位酶(fatty acid translocase,FAT/CD36)和小窝蛋白-1(caveolin-1).研究上述肌肉脂肪酸转运膜蛋白的结构功能、调控机制及相互关系,可能为肥胖等脂类代谢紊乱疾病的诊治提供新的手段.  相似文献   

14.
Abstract The strain ' Acetobacter rancens ' CCM1774 was investigated concerning the occurrence of aldehyde dehydrogenases after growth on different carbon sources. Two constitutive enzyme activities, a NADP+-dependent one and a pyridine nucleotide-independent one, have been detected. The catalytic properties of the latter membrane-bound aldehyde dehydrogenase suggest its participation in the degradation of long-chain n -alkanes.  相似文献   

15.
Because of the importance of long-chain fatty acids (LCFAs) as a myocardial energy substrate, myocardial LCFA metabolism has been of particular interest for the understanding of cardiac pathophysiology. Recently, by using radiolabeled LCFA analogues, myocardial LCFA metabolism has been clinically evaluated, which revealed a total defect of myocardial LCFA accumulation in a small number of subjects. The mechanism for the cellular LCFA uptake process is still disputable, but recent results suggest that fatty acid translocase (FAT)/CD36 is a transporter in the heart. In the present study, we analyzed mutations and protein expression of the FAT/CD36 gene in 47 patients who showed total lack of the accumulation of a radiolabeled LCFA analogue in the heart. All the patients carried two mutations in the FAT/CD36 gene, and expression of the FAT/CD36 protein was not detected on either platelet or monocyte membranes. Our results showed the link between mutations of the FAT/CD36 gene and a defect in the accumulation of LCFAs in the human heart.  相似文献   

16.
In cardiac and skeletal muscles, insulin regulates the uptake of long-chain fatty acid (LCFA) via the putative LCFA transporter CD36. Biochemical studies propose an insulin-induced translocation of CD36 from intracellular pools to the plasma membrane (PM), similar to glucose transporter 4 (GLUT4) translocation. To characterize insulin-induced CD36 translocation in intact cells, Chinese hamster ovary (CHO) cells stably expressing CD36 or myc-tagged GLUT4 (GLUT4myc) were created. Immuno-fluorescence microscopy revealed CD36 to be located both intracellularly (in--at least partially--different compartments than GLUT4myc) and at the PM. Upon stimulation with insulin, CD36 translocated to a PM localization similar to that of GLUT4myc; the increase in PM CD36 content, as quantified by surface-protein biotinylation, amounted to 1.7-fold. The insulin-induced CD36 translocation was shown to be phosphatidylinositol-3 kinase-dependent, and reversible (as evidenced by insulin wash-out) in a similar time frame as that for GLUT4. The expression of GLUT4myc in non-stimulated cells, and the insulin-induced increase in PM GLUT4myc correlated with increased deoxyglucose uptake. By contrast, CD36 expression in non-stimulated cells and the insulin-induced increase in PM CD36 were not paralleled by a rise in LCFA uptake, suggesting that in these cells, such increase requires additional proteins, or a protein activation step. Taken together, this study is the first to present morphological evidence for CD36 translocation, and shows this process to resemble GLUT4 translocation.  相似文献   

17.
Cellular long-chain fatty acid uptake is believed to occur largely by protein-mediated transmembrane transport of fatty acids, and also by passive diffusional uptake. It is postulated that the membrane proteins function in trapping of fatty acids from extracellular sources, whereafter their transmembrane translocation occurs by passive diffusion through the lipid bilayer. The key membrane-associated proteins involved are plasma membrane fatty acid-binding protein (FABP(pm)) and fatty acid translocase (FAT/CD36). Their plasma membrane contents are positively correlated with rates of fatty acid uptake. In studies with heart and skeletal muscle we observed that FAT/CD36 is regulated acutely, in that both contraction and insulin can translocate FAT/CD36 from an intracellular depot to the sarcolemma, thereby increasing the rate of fatty acid uptake. In addition, from studies with obese Zucker rats, an established rodent model of obesity and insulin resistance, evidence has been obtained that in heart, muscle and adipose tissue FAT/CD36 is permanently relocated from an intracellular pool to the plasma membrane, resulting in increased fatty acid uptake rates in this condition. These combined observations indicate that protein-mediated fatty acid uptake is a key step in cellular fatty acid utilization, and suggest that malfunctioning of the uptake process could be a critical factor in the pathogenesis of insulin resistance.  相似文献   

18.
CD36, also named fatty acid translocase, has been identified as a putative membrane transporter for long-chain fatty acids (LCFA). In the heart, contraction-induced 5′ AMP-activated protein kinase (AMPK) signaling regulates cellular LCFA uptake through translocation of CD36 and possibly of other LCFA transporters from intracellular storage compartments to the sarcolemma. In this study, isolated cardiomyocytes from CD36+/+- and CD36−/− mice were used to investigate to what extent basal and AMPK-mediated LCFA uptake are CD36-dependent. Basal LCFA uptake was not altered in CD36−/− cardiomyocytes, most likely resulting from a (1.8-fold) compensatory upregulation of fatty acid-transport protein-1. The stimulatory effect of contraction-mimetic stimuli, oligomycin (2.5-fold) and dipyridamole (1.6-fold), on LCFA uptake into CD36+/+ cardiomyocytes was almost completely lost in CD36−/− cardiomyocytes, despite that AMPK signaling was fully intact. CD36 is almost entirely responsible for AMPK-mediated stimulation of LCFA uptake in cardiomyocytes, indicating a pivotal role for CD36 in mediating changes in cardiac LCFA fluxes.  相似文献   

19.
Regulatory role of E-NTPase/NTPDase in fat/CD36-mediated fatty acid uptake   总被引:1,自引:0,他引:1  
Fatty acid translocase (FAT)/CD36-mediated long-chain fatty acid uptake in human umbilical vessel endothelial cells is associated with as yet uncharacterized translocase activity. The molecular mechanism of its function is not yet understood. Numerous attempts to purify rat cardiac sarcolemmal E-NTPase (an integral membrane protein also referred to as ecto-Ca(2+)/Mg(2+)ATPase) have revealed a complete amino acid sequence identity for FAT/CD36 protein. The most striking observation is that purified CD36 from human platelets shows significant E-NTPase activity. In view of recent progress in understanding CD36 functional properties, an attempt is made in this article to illustrate the point that association of E-NTPase (possibly extracellular Ca(2+)/Mg(2+)nucleotide triphosphate diphosphohydrolase) activity with CD36 may be of potential functional significance.  相似文献   

20.
Giant sarcolemmal vesicles were isolated from rat heart and hindlimb muscles for a) characterization of long-chain fatty acid transport in the absence of metabolism and b) comparison of fatty acid transport protein expression with fatty acid transport. Giant vesicles contained cytosolic fatty acid binding protein. Palmitate uptake was completely divorced from its metabolism. All palmitate taken up was recovered in the intravesicular cytosol as unesterified FA. Palmitate uptake by heart vesicles exhibited a K m of 9.7 nm, similar to that of muscle (K m = 9.7 nm). Vmax (2.7 pmol/mg protein/s) in heart was 8-fold higher than in muscle (0.34 pmol/mg protein/s). Palmitate uptake was inhibited in heart (55-80%) and muscle (31-50%) by trypsin, phloretin, sulfo-N-succinimidyloleate (SSO), or a polyclonal antiserum against the 40 kDa plasma membrane fatty acid binding protein (FABPpm). Palmitate uptake by heart and by red and white muscle vesicles correlated well with the expression of fatty acid translocase (FAT/CD36) and fatty acid binding protein FABPpm, which may act in concert. The expression of fatty acid transport protein (FATP), was 10-fold lower in heart vesicles than in white muscle vesicles.It is concluded that long-chain fatty acid uptake by heart and muscle vesicles is largely protein-mediated, involving FAT/CD36 and FABPpm. The role of FATP in muscle and heart remains uncertain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号