首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With only ~3,000 wild individuals surviving restricted to just 7% of their historical range, tigers are now a globally threatened species. Therefore, conservation efforts must prioritize regions that harbor more tigers, as well try to capture most of the remaining genetic variation and habitat diversity. Only such prioritization based on demographic, genetic, and ecological considerations can ensure species recovery and retention of evolutionary flexibility in the face of ongoing global changes. Although scientific understanding of ecological and demographic aspects of extant wild tiger populations has improved recently, little is known about their genetic composition and variability. We sampled 73 individual tigers from 28 reserves spread across a diversity of habitats in the Indian subcontinent to obtain 1,263 bp of mitochondrial DNA and 10 microsatellite loci. Our analyses reveals that Indian tigers retain more than half of the extant genetic diversity in the species. Coalescent simulations attribute this high genetic diversity to a historically large population size of about 58,200 tigers for peninsular India south of the Gangetic plains. Furthermore, our analyses indicate a precipitous, possibly human-induced population crash ~200 years ago in India, which is in concordance with historical records. Our results suggest that only 1.7% (with an upper limit of 13% and a lower limit of 0.2%) of tiger numbers in historical times remain now. In the global conservation context our results suggest that, based on genetic, demographic, and ecological considerations, the Indian subcontinent holds the key to global survival and recovery of wild tigers.  相似文献   

2.
Today, most wild tigers live in small, isolated Protected Areas within human dominated landscapes in the Indian subcontinent. Future survival of tigers depends on increasing local population size, as well as maintaining connectivity between populations. While significant conservation effort has been invested in increasing tiger population size, few initiatives have focused on landscape-level connectivity and on understanding the effect different landscape elements have on maintaining connectivity. We combined individual-based genetic and landscape ecology approaches to address this issue in six protected areas with varying tiger densities and separation in the Central Indian tiger landscape. We non-invasively sampled 55 tigers from different protected areas within this landscape. Maximum-likelihood and Bayesian genetic assignment tests indicate long-range tiger dispersal (on the order of 650 km) between protected areas. Further geo-spatial analyses revealed that tiger connectivity was affected by landscape elements such as human settlements, road density and host-population tiger density, but not by distance between populations. Our results elucidate the importance of landscape and habitat viability outside and between protected areas and provide a quantitative approach to test functionality of tiger corridors. We suggest future management strategies aim to minimize urban expansion between protected areas to maximize tiger connectivity. Achieving this goal in the context of ongoing urbanization and need to sustain current economic growth exerts enormous pressure on the remaining tiger habitats and emerges as a big challenge to conserve wild tigers in the Indian subcontinent.  相似文献   

3.
Species conservation can be improved by knowledge of evolutionary and genetic history. Tigers are among the most charismatic of endangered species and garner significant conservation attention. However, their evolutionary history and genomic variation remain poorly known, especially for Indian tigers. With 70% of the world’s wild tigers living in India, such knowledge is critical. We re-sequenced 65 individual tiger genomes representing most extant subspecies with a specific focus on tigers from India. As suggested by earlier studies, we found strong genetic differentiation between the putative tiger subspecies. Despite high total genomic diversity in India, individual tigers host longer runs of homozygosity, potentially suggesting recent inbreeding or founding events, possibly due to small and fragmented protected areas. We suggest the impacts of ongoing connectivity loss on inbreeding and persistence of Indian tigers be closely monitored. Surprisingly, demographic models suggest recent divergence (within the last 20,000 years) between subspecies and strong population bottlenecks. Amur tiger genomes revealed the strongest signals of selection related to metabolic adaptation to cold, whereas Sumatran tigers show evidence of weak selection for genes involved in body size regulation. We recommend detailed investigation of local adaptation in Amur and Sumatran tigers prior to initiating genetic rescue.  相似文献   

4.
虎(Panthera tigris)作为顶级捕食者, 对维持森林生态系统服务和结构完整性有着重要作用, 是研究和保护工作的旗舰物种。历史上, 虎曾广泛分布于亚洲大部分地区, 如今仅分布于南亚、东南亚和东北亚的破碎化栖息地, 各区域种群处于濒危或极度濒危状态。准确了解野生虎的种群状态和生态需求信息对于科学开展保护和恢复工作至关重要。本文通过综述近几十年的研究文献, 总结了野生虎种群现状和主要威胁因素, 评价了已有研究的重点与不足, 为未来亚洲虎种群的研究和保护提出了建议。目前与虎相关的研究主要集中在分布范围最广的孟加拉虎(P. t. tigris)和东北虎(P. t. altaica) 2个亚种, 而最急需关注的其他亚种仍研究不足。经过近十几年的努力和保护投入, 目前野生虎种群数量已从2010年的大约3,200只恢复到现在约4,500只, 但在越南、柬埔寨和老挝3个国家已经灭绝。虎面临的主要威胁包括持续的栖息地破坏和隔离、猎物缺乏、近交衰退、人虎冲突、贸易与盗猎和疾病威胁等。未来的研究和保护工作需要加强种群和栖息地连通性恢复、个体重引入、疾病管控以及加强跨境合作和反盗猎等。  相似文献   

5.
The Sundarbans tiger inhabits a unique mangrove habitat and are morphologically distinct from the recognized tiger subspecies in terms of skull morphometrics and body size. Thus, there is an urgent need to assess their ecological and genetic distinctiveness and determine if Sundarbans tigers should be defined and managed as separate conservation unit. We utilized nine microsatellites and 3 kb from four mitochondrial DNA (mtDNA) genes to estimate genetic variability, population structure, demographic parameters and visualize historic and contemporary connectivity among tiger populations from Sundarbans and mainland India. We also evaluated the traits that determine exchangeability or adaptive differences among tiger populations. Data from both markers suggest that Sundarbans tiger is not a separate tiger subspecies and should be regarded as Bengal tiger (P. t. tigris) subspecies. Maximum likelihood phylogenetic analyses of the mtDNA data revealed reciprocal monophyly. Genetic differentiation was found stronger for mtDNA than nuclear DNA. Microsatellite markers indicated low genetic variation in Sundarbans tigers (He= 0.58) as compared to other mainland populations, such as northern and Peninsular (Hebetween 0.67- 0.70). Molecular data supports migration between mainland and Sundarbans populations until very recent times. We attribute this reduction in gene flow to accelerated fragmentation and habitat alteration in the landscape over the past few centuries. Demographic analyses suggest that Sundarbans tigers have diverged recently from peninsular tiger population within last 2000 years. Sundarbans tigers are the most divergent group of Bengal tigers, and ecologically non-exchangeable with other tiger populations, and thus should be managed as a separate “evolutionarily significant unit” (ESU) following the adaptive evolutionary conservation (AEC) concept.  相似文献   

6.
Tigers are endangered apex predators. They typify endangered species because they are elusive, rare, and face numerous threats across their range. Tigers also symbolize conservation. However, it is very difficult to study tigers because of their stated nature. Also, tiger conservation is a geopolitically sensitive topic, making it difficult to use the studies to propose evidence-based management that allows their recovery, especially in the context of conservation genetics. Zhang et al. (Mol. Ecol. Resour., 2022) have created very valuable and rare resources to aid the community in conserving tigers. First, they present chromosome level genome assemblies of a South China tiger and an Amur tiger. Second, they present whole genome sequences of 16 captive South China tigers. Additionally, by using the assemblies they model the demographic history of these populations, estimate inbreeding and the potential threats they face in captivity. This approach is particularly important because genetic management is now the only remaining option for South China tigers, because they are extinct in the wild. In other words, captive individuals are our only hope for some day restoring the wild populations of South China tigers.  相似文献   

7.
Fostering local community tolerance for endangered carnivores, such as tigers (Panthera tigris), is a core component of many conservation strategies. Identification of antecedents of tolerance will facilitate the development of effective tolerance-building conservation action and secure local community support for, and involvement in, conservation initiatives. We use a stated preference approach for measuring tolerance, based on the ‘Wildlife Stakeholder Acceptance Capacity’ concept, to explore villagers’ tolerance levels for tigers in the Bangladesh Sundarbans, an area where, at the time of the research, human-tiger conflict was severe. We apply structural equation modeling to test an a priori defined theoretical model of tolerance and identify the experiential and psychological basis of tolerance in this community. Our results indicate that beliefs about tigers and about the perceived current tiger population trend are predictors of tolerance for tigers. Positive beliefs about tigers and a belief that the tiger population is not currently increasing are both associated with greater stated tolerance for the species. Contrary to commonly-held notions, negative experiences with tigers do not directly affect tolerance levels; instead, their effect is mediated by villagers’ beliefs about tigers and risk perceptions concerning human-tiger conflict incidents. These findings highlight a need to explore and understand the socio-psychological factors that encourage tolerance towards endangered species. Our research also demonstrates the applicability of this approach to tolerance research to a wide range of socio-economic and cultural contexts and reveals its capacity to enhance carnivore conservation efforts worldwide.  相似文献   

8.
9.
Theoretical and empirical research suggests that carnivore distributions are largely determined by prey availability. Availability depends not only on prey density but also on prey accessibility which is affected, in part, by the configuration of landscape attributes that make prey vulnerable to predation. Exactly how spatial variation in these processes shape patterns of carnivore habitat use at the home range scale remains poorly understood. We examined the influence of prey density (negative binomial resource selection function) and vulnerability (kill site resource selection function), mapped separately for each of three species of primary prey, on habitat use patterns within the home range for Amur tigers Panthera tigris altaica in Far East Russia over 20 winters. We developed spatially‐explicit mixed linear regression models to assess these patterns and found that models with parameters for specific primary prey were more robust than models with composite parameters for all primary prey species. This emphasizes the importance of evaluating predation dynamics at a species‐specific level. We also found that Amur tigers used habitat within the home range where red deer Cervus elaphus and wild boar Sus scrofa were dense. These two species were clearly preferred by tigers accounting for 72% (201 of the 278) of the tiger kills detected. The effect of red deer density however, was modulated by the vulnerability of red deer in the landscape. Amur tigers tended to establish their home ranges on habitat where red deer were most vulnerable to predation, but would use habitat where red deer were dense in the peripheral regions of their home ranges. This suggests that tigers may utilize two separate strategies for acquiring prey. As the configuration of resource patches within the home range influences carnivore survival and reproduction, our analysis has implications for tiger conservation that extend beyond our improved understanding of tiger‐prey ecology.  相似文献   

10.
The Sundarban of India and Bangladesh is the only mangrove reserve forest in the world inhabited by the tiger (Panthera tigris). Tigers in the Sundarban mangrove are widely known for frequently straying into the surrounding reclaimed areas. Data collected from household village survey and documents of the Forest Department show that tiger straying incidents happen throughout the year, but most of them occurred during 3 months (Dec–Feb) of the winter season (42%) followed by 3 months (July–Sept) of the monsoon season (31%). 84.22% of cases have been reported from 21 villages of five affected blocks of Sundarban. In most cases, tigers resorted to cattle lifting or poultry feeding. Only in 8.9% of the cases were human beings attacked or killed. Majority of the straying tigers (68.46%) were male. In most cases (78.9%) strayed tigers were aged and 22% of these were partly injured. 96.05% straying occurs during night. This study also aims at exploring the causes of frequent straying, livestock and human casualties as a result of conflict and retaliation killing of tigers. Straying frequency is correlated negatively with the width of the creeks or rivers in the village side and no relationship is identified with the area of the forest block as well as natural prey abundance. Overall, improved nylon fencing, increased patroling, establishment of the Forest Protection Committee (FPC) and the Eco Development Committee (EDC) are not associated with reduction of straying frequency as well as livestock losses to tiger straying.  相似文献   

11.
Aims To model differential extinction rates for island populations of tigers Panthera tigris and leopards P. pardus. Location Indonesia. Methods We built VORTEX population models of tiger and leopard populations on an island the size of Bali (3632 km2), using data from the literature. Results The tiger populations were less extinction prone than the leopard populations. This was unexpected as tigers had the smaller population sizes and, as such, might be assumed to be more extinction prone. We identified several aspects of tiger breeding biology that explain the result. Main conclusions Sea level reconstructions suggest that both tiger and leopard would have been present in Java, Sumatra and Bali at the end of the last glacial. Our model provides a plausible mechanism based on population ecology to explain why these leopard populations were more extinction prone than the tiger populations. In addition it illustrates the potential utility of population ecology models in understanding historical patterns in biogeography.  相似文献   

12.

Background

Bengal tiger Panthera tigris tigris the National Animal of India, is an endangered species. Estimating populations for such species is the main objective for designing conservation measures and for evaluating those that are already in place. Due to the tiger's cryptic and secretive behaviour, it is not possible to enumerate and monitor its populations through direct observations; instead indirect methods have always been used for studying tigers in the wild. DNA methods based on non-invasive sampling have not been attempted so far for tiger population studies in India. We describe here a pilot study using DNA extracted from faecal samples of tigers for the purpose of population estimation.

Results

In this study, PCR primers were developed based on tiger-specific variations in the mitochondrial cytochrome b for reliably identifying tiger faecal samples from those of sympatric carnivores. Microsatellite markers were developed for the identification of individual tigers with a sibling Probability of Identity of 0.005 that can distinguish even closely related individuals with 99.9% certainty. The effectiveness of using field-collected tiger faecal samples for DNA analysis was evaluated by sampling, identification and subsequently genotyping samples from two protected areas in southern India.

Conclusion

Our results demonstrate the feasibility of using tiger faecal matter as a potential source of DNA for population estimation of tigers in protected areas in India in addition to the methods currently in use.
  相似文献   

13.
Conserving large populations with unique adaptations is essential for minimizing extinction risks. Sundarban mangroves (>10,000 km2) are the only mangrove inhabited by tigers. Baseline information about this tiger population is lacking due to its man-eating reputation and logistic difficulties of sampling. Herein, we adapt photographic capture-mark-recapture (CMR) and distance sampling to estimate tiger and prey densities. We placed baited camera stations in a typical mangrove in 2010 and 2012. We used telemetry based tiger home-range radius (5.73 km, SE 0.72 km) to estimate effective trapping area (ETA). An effort of 407 and 1073 trap nights were exerted to photocapture 10 and 22 unique tigers in 2010 and 2012. We accounted for use of bait by modelling behaviour and heterogeneity effects in program MARK and secr package in program R. Using traditional CMR, tiger number was estimated at 11 (SE 2) and density at 4.07 (SE range 3.09–5.17) in 2010 while in 2012, tiger number was 24 (SE 3) and density 4.63 (SE range 3.92–5.40) tigers/100 km2. With likelihood based spatially explicit CMR, tiger densities were estimated at 4.08 (SE 1.51) in 2010 and 5.81 (SE 1.24) tigers/100 km2 in 2012. Using distance sampling along water channels, we estimated chital density at 5.24/km2, SE 1.23 which could potentially support 4.68 tigers/100 km2 [95 % CI (3.92, 5.57)]. Our estimates suggest that Sundarban tiger population is one of the largest in the world and therefore merits high conservation status.  相似文献   

14.
Over the past century, the endangered Amur tiger (Panthera tigris altaica) has experienced a severe contraction in demography and geographic range because of habitat loss, poaching, and prey depletion. In its historical home in Northeast China, there appears to be a single tiger population that includes tigers in Southwest Primorye and Northeast China; however, the current demographic status of this population is uncertain. Information on the abundance, distribution and genetic diversity of this population for assessing the efficacy of conservation interventions are scarce. We used noninvasive genetic detection data from scats, capture-recapture models and an accumulation curve method to estimate the abundance of Amur tigers in Northeast China. We identified 11 individual tigers (6 females and 5 males) using 10 microsatellite loci in three nature reserves between April 2013 and May 2015. These tigers are confined primarily to a Hunchun Nature Reserve along the border with Russia, with an estimated population abundance of 9–11 tigers during the winter of 2014–2015. They showed a low level of genetic diversity. The mean number of alleles per locus was 2.60 and expected and observed heterozygosity were 0.42 and 0.49, respectively. We also documented long-distance dispersal (~270 km) of a male Amur tiger to Huangnihe Nature Reserve from the border, suggesting that the expansion of neighboring Russian populations may eventually help sustain Chinese populations. However, the small and isolated population recorded by this study demonstrate that there is an urgent need for more intensive regional management to create a tiger-permeable landscape and increased genetic connectivity with other populations.  相似文献   

15.
16.
个性研究在动物生态研究和迁地保护中发挥着重要作用.华南虎(Panthera tigris amoyensis)作为最濒危的虎亚种,目前仍然缺乏对其个性特征的研究探索.本文通过个性特征主观评价法对6只圈养华南虎进行个性评估,并对比不同性别的华南虎个性特征的差异,使用新异物体测验进一步验证个性特征主观评价法的结果.最终提取...  相似文献   

17.
Lethal infections with canine distemper virus (CDV) have recently been diagnosed in Amur tigers (Panthera tigris altaica), but long-term implications for the population are unknown. This study evaluates the potential impact of CDV on a key tiger population in Sikhote-Alin Biosphere Zapovednik (SABZ), and assesses how CDV might influence the extinction potential of other tiger populations of varying sizes. An individual-based stochastic, SIRD (susceptible-infected-recovered/dead) model was used to simulate infection through predation of infected domestic dogs, and/or wild carnivores, and direct tiger-to-tiger transmission. CDV prevalence and effective contact based on published and observed data was used to define plausible low- and high-risk infection scenarios. CDV infection increased the 50-year extinction probability of tigers in SABZ by 6.3% to 55.8% compared to a control population, depending on risk scenario. The most significant factors influencing model outcome were virus prevalence in the reservoir population(s) and its effective contact rate with tigers. Adjustment of the mortality rate had a proportional impact, while inclusion of epizootic infection waves had negligible additional impact. Small populations were found to be disproportionately vulnerable to extinction through CDV infection. The 50-year extinction risk in populations consisting of 25 individuals was 1.65 times greater when CDV was present than that of control populations. The effects of density dependence do not protect an endangered population from the impacts of a multi-host pathogen, such as CDV, where they coexist with an abundant reservoir presenting a persistent threat. Awareness of CDV is a critical component of a successful tiger conservation management policy.  相似文献   

18.
Understanding the patterns of gene flow of an endangered species metapopulation occupying a fragmented habitat is crucial for landscape-level conservation planning and devising effective conservation strategies. Tigers (Panthera tigris) are globally endangered and their populations are highly fragmented and exist in a few isolated metapopulations across their range. We used multi-locus genotypic data from 273 individual tigers (Panthera tigris tigris) from four tiger populations of the Satpura–Maikal landscape of central India to determine whether the corridors in this landscape are functional. This 45 000 km2 landscape contains 17% of India''s tiger population and 12% of its tiger habitat. We applied Bayesian and coalescent-based analyses to estimate contemporary and historical gene flow among these populations and to infer their evolutionary history. We found that the tiger metapopulation in central India has high rates of historical and contemporary gene flow. The tests for population history reveal that tigers populated central India about 10 000 years ago. Their population subdivision began about 1000 years ago and accelerated about 200 years ago owing to habitat fragmentation, leading to four spatially separated populations. These four populations have been in migration–drift equilibrium maintained by high gene flow. We found the highest rates of contemporary gene flow in populations that are connected by forest corridors. This information is highly relevant to conservation practitioners and policy makers, because deforestation, road widening and mining are imminent threats to these corridors.  相似文献   

19.
Evidence is vital. Understanding what interventions are effective is critical for the conservation of wild tigers and conservation biology in general. We evaluated the effectiveness of tiger reserves within India, a country with more than half of the estimated wild tiger population, with comparative effectiveness research. Other complex environments, medicine and business use these techniques where cause and effects are often non-linear. These techniques also allowed us to evaluate data from the small sample size often seen in conservation interventions. The opinions of three tiger experts were used to generate a list of seven tiger reserves classified as successful and five reserves as failures. We also used expert opinion to identify any key individuals that garnered widespread support for tiger conservation at any of the identified reserves. Using data from the Indian Census, World Database on Protected Areas, and the Socioeconomic Data and Applications Center, we analyzed the human population around the tiger reserves. We found two surprising insights that have received scant attention in the peer-reviewed literature. First, one can achieve tiger conservation success even within a densely populated human landscape where a high percentage of the population is involved in agriculture. Second, the presence of “conservation champions” can dramatically affect the performance of individual reserves and have positive outcomes for tiger conservation.  相似文献   

20.
Long-term data of large felids is important to understand their reproductive biology and behavior for effective conservation planning. We used camera trap data and direct sightings from 2005 to 2013 to estimate the age of the first parturition of Bengal tigers (Panthera tigris) in a semi-arid habitat in India. We monitored 11 females in the Ranthambhore Tiger Reserve (RTR) from when they were 2–6 months old. The mean age at first reproduction (impregnation leading to cubs) was 51.3?±?(SE) 4.5 months. The tiger population in RTR is an important source population and genetic pool in the western most distribution of tiger. Thus, continuous monitoring of tiger populations is important to develop an understanding of reproductive biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号