首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphatidylinositol 3-kinase (PI-3K) has been linked to promitogenic responses in splenic B cells following B cell Ag receptor (BCR) cross-linking; however identification of the signaling intermediates that link PI-3K activity to the cell cycle remains incomplete. We show that cyclin D2 induction is blocked by the PI-3K inhibitors wortmannin and LY294002, which coincides with impaired BCR-mediated mitogen-activated protein/extracellular signal-related kinase kinase (MEK)1/2 and p42/44ERK phosphorylation on activation residues. Cyclin D2 induction is virtually absent in B lymphocytes from mice deficient in the class I(A) PI-3K p85alpha regulatory subunit. In contrast to studies with PI-3K inhibitors, which inhibit all classes of PI-3Ks, the p85alpha regulatory subunit is not required for BCR-induced MEK1/2 and p42/44ERK phosphorylation, suggesting the contribution of another PI-3K family members in MEK1/2 and p42/44ERK activation. However, p85alpha(-/-) splenic B cells are defective in BCR-induced IkappaB kinase beta and IkappaBalpha phosphorylation. We demonstrate that NF-kappaB signaling is required for cyclin D2 induction via the BCR in normal B cells, implicating a possible link with the defective IkappaB kinase beta and IkappaBalpha phosphorylation in p85alpha(-/-) splenic B cells and their ability to induce cyclin D2. These results indicate that MEK1/2-p42/44ERK and NF-kappaB pathways link PI-3K activity to Ag receptor-mediated cyclin D2 induction in splenic B cells.  相似文献   

2.
3.
We examined whether Siglec-9 modulates cytokine production in the macrophage cell line RAW264. Cells expressing Siglec-9 produced low levels of tumor necrosis factor (TNF)-α upon stimulation with lipopolysaccharide, peptidoglycan, unmethylated CpG DNA, and double-stranded RNA. On the other hand, interleukin (IL)-10 production was strongly enhanced in Siglec-9-expressing cells. Similar activities were also exhibited by Siglec-5. However, the up-regulation of IL-10 as well as the down-regulation of TNF-α was abrogated when two tyrosine residues in the cytoplasmic tail of Siglec-9 were mutated to phenylalanine. A membrane proximal ITIM mutant of Siglec-9 did not enhance IL-10 production but partly inhibited TNF-α production, indicating diverse regulation mechanisms of TNF-α and IL-10. Siglec-9 also enhanced the production of IL-10 in the human macrophage cell line THP-1. These results demonstrate that Siglec-9 enhances the production of the anti-inflammatory cytokine IL-10 in macrophages.  相似文献   

4.
Siglecs are immunoglobulin lectin group proteins that recognize the sialic acid moiety. We previously reported that the expression of Siglec-9 on the macrophage cell line RAW264 markedly enhanced Toll-like receptor (TLR)-induced interleukin (IL)-10 production and inhibited the production of proinflammatory cytokines. In this study, we examined the lectin-dependent anti-inflammatory activities of Siglec-9. IL-10 production was modestly reduced by a mutation that disrupted the lectin activity of Siglec-9, while the reduction in tumor necrosis factor-α was not affected. Membrane fractionation experiments revealed that a part of Siglec-9 resided in the detergent-insoluble microdomain, the so-called lipid raft fraction. The amount of Siglec-9 in the lipid raft fraction rapidly increased following TLR2 stimulation by peptidoglycan and peaked after 3–10 min. This time course was similar to that of TLR2. The double tyrosine mutant in immunoreceptor tyrosine-based inhibitory motifs moved to lipid rafts in a similar manner, while lectin-defective Siglec-9 was not detected in the lipid raft fraction. The production of IL-10 was partially reduced by cholesterol oxidase that disturbed lipid raft organization. Taken together, these results suggest that Siglecs exhibit lectin-dependent changes in cellular localization, which may be partly linked to its control mechanism that increases the production of IL-10.  相似文献   

5.
Siglecs, sialic acid-recognizing Ig-superfamily lectins, regulate various aspects of immune responses, and have also been shown to induce the endocytosis of binding materials such as anti-Siglec antibodies or sialic acid-harboring bacteria. In this study, we demonstrated that the expression of Siglec-9 enhanced the transfection efficiency of several cell lines such as macrophage RAW264 and non-hematopoietic 293FT cells. We applied this finding to the production of a lentiviral vector in which cells were transfected simultaneously with multiple vectors, and achieved a twice increase in viral production levels. Furthermore, 293FT cells expressing lectin-defective Siglec-9 produced three- to seven-fold higher titer of viral vector compared with parental 293FT cells. These results suggest that Siglec-9 enhanced lentiviral vector production in a lectin-independent manner.  相似文献   

6.
7.
Lin SY  Chen CL  Wu YL  Yang YC  Hwu YM 《Cell proliferation》2008,41(3):492-505
Abstract. Objectives : To investigate potential interactions between bone morphogenetic protein (BMP) and Wnt signalling on differentiating mouse embryonic stem cells (mESC). Materials and methods : Mouse embryonic stem cells were cultured with differing combinations of Wnt3a, BMP4 and inhibitors of Wnt, BMP, PI-3K (phosphoinositide 3-kinase), p38, ERK1/2 (extracellular signal-regulated kinase 1/2) and JNK (c-Jun N-terminal kinase) pathways. Results : We found that Wnt3a synergized with BMP4 to promote mESC proliferation. Furthermore, the relative ratio of Wnt3a to BMP4 doses was critical to their synergistic effects, which could be abolished by using Dkk-1, noggin or the inhibitors of PI-3K, p38, ERK1/2 and JNK pathways. We also demonstrated that combination of Wnt3a and BMP4 could suppress ectodermal differentiation of mESCs. Moreover, inhibitors of PI-3K, p38, ERK1/2 and JNK pathways could negate this effect. Conclusion : Relative ratio of Wnt3a to BMP4 doses is critical to their synergistic effect on differentiating mESC proliferation, which may work through PI-3K, p38, ERK1/2 and JNK pathways.  相似文献   

8.
Although regulatory mechanisms for immune cells with inhibitory signals via immunoreceptor tyrosine-based inhibitory motifs are well known, signals transduced via interaction between Siglecs and sialyl compounds on their counterreceptors into target cells have not been reported to date. In this study, we found that an astrocytoma cell line, AS, showed detachment from culture plates when co-cultured with Siglec-9-expressing cells and/or soluble Siglec-9. Moreover, detached AS cells regrew as co-cultured cells with Siglec-9-deficient cells. They also showed increased motility and invasiveness upon Siglec-9 binding. In immunoblotting, rapid degradation of focal adhesion kinase (FAK) and related signaling molecules such as Akt, paxillin, and p130Cas was observed immediately after the co-culture. Despite degradation of these molecules, increased p-Akt was found at the front region of the cytoplasm, probably reflecting increased cell motility. Calpain was considered to be a responsible protease for the protein degradation by the inhibition experiments. These results suggest that protein degradation of FAK and related molecules was induced by Siglec-9 binding to its counterreceptors via sialylglycoconjugates, leading to the modulation of adhesion kinetics of cancer cells. Thus, this might be a mechanism by which cancer cells utilize Siglec-9-derived signals to escape from immunosurveillance.  相似文献   

9.
We have previously shown the importance of LTB4 in human pancreatic cancer. LTB4 receptor antagonists block growth and induce apoptosis in pancreatic cancer cells both in vitro and in vivo. Therefore, we investigated the effect of LTB4 on proliferation of human pancreatic cancer cells and the mechanisms involved. LTB4 stimulated DNA synthesis and proliferation of both PANC-1 and AsPC-1 human pancreatic cancer cells, as measured by thymidine incorporation and cell number. LTB4 stimulated rapid and transient activation of MEK and ERK1/2 kinases. The MEK inhibitors, PD98059 and U0126, blocked LTB4-stimulated ERK1/2 activation and cell proliferation. LTB4 also stimulated phosphorylation of p38 MAPK; however, the p38 MAPK inhibitor, SB203580, failed to block LTB4-stimulated growth. The activity of JNK/SAPK was not affected by LTB4 treatment. Phosphorylation of Akt was also induced by LTB4 and this effect was blocked by the PI-3 kinase inhibitor wortmannin, which also partially blocked LTB4-stimulated cell proliferation. In conclusion, LTB4 stimulates proliferation of human pancreatic cancer cells through MEK/ERK and PI-3 kinase/Akt pathways, while p38 MPAK and JNK/SAPK are not involved.  相似文献   

10.
To evaluate the role of mitogen-activated protein (MAP) kinase and other signaling pathways in neuronal cell differentiation by basic fibroblast-derived growth factor (bFGF), we used a conditionally immortalized cell line from rat hippocampal neurons (H19-7). Previous studies have shown that activation of MAP kinase kinase (MEK) is insufficient to induce neuronal differentiation of H19-7 cells. To test the requirement for MEK and MAP kinase (ERK1 and ERK2), H19-7 cells were treated with the MEK inhibitor PD098059. Although the MEK inhibitor blocked the induction of differentiation by constitutively activated Raf, the H19-7 cells still underwent differentiation by bFGF. These results suggest that an alternative pathway is utilized by bFGF for differentiation of the hippocampal neuronal cells. Expression in the H19-7 cells of a dominant-negative Ras (N17-Ras) or Raf (C4-Raf) blocked differentiation by bFGF, suggesting that Ras and probably Raf are required. Expression of dominant-negative Src (pcSrc295Arg) or microinjection of an anti-Src antibody blocked differentiation by bFGF in H19-7 cells, indicating that bFGF also signals through a Src kinase-mediated pathway. Although neither constitutively activated MEK (MEK-2E) nor v-Src was sufficient individually to differentiate the H19-7 cells, coexpression of constitutively activated MEK and v-Src induced neurite outgrowth. These results suggest that (i) activation of MAP kinase (ERK1 and ERK2) is neither necessary nor sufficient for differentiation by bFGF; (ii) activation of Src kinases is necessary but not sufficient for differentiation by bFGF; and (iii) differentiation of H19-7 neuronal cells by bFGF requires at least two signaling pathways activated by Ras and Src.  相似文献   

11.
Viability and myogenesis from C2C12 muscle cells and L6 rat myoblasts were dose-dependently stimulated by insulin. The metabolic inhibitors of phosphatidyl-inositol-3-kinase (PI-3K, LY294002) and of MAPKK/ERK kinase (MEK, PD98059) differently affected insulin-stimulated myogenesis of the cells. After LY294002 and PD98059 treatment, viability deteriorated and apparently an additive effect of both metabolic inhibitors was observed, irrespective of the method of measurement (neutral red or MTT assay). These inhibitors were antagonistic in myogenesis. Our results confirm that insulin regulates cell viability by at least two distinct pathways, namely by PI-3K- and MEK-dependent signalling cascades. Both pathways are agonistic in cell viability, whereas PI-3K rather than MEK supports insulin-mediated myogenicity. Accordingly, inhibition of insulin action by LY294002, but not PD98059, was accompanied with a reduced level of Ser473-phosphorylated Akt with additional loss of myogenin protein. Besides, repression of insulin signalling by either PI-3K or MEK inhibitor diminished expression of selected subunits of the mitochondrial oxidative phosphorylation enzymes (OXPHOS). In turn, insulin raised and accelerated protein expression of subunits I and IV of mitochondrial cytochrome-c oxidase (COX). In addition, the level of myogenin, the molecular marker of terminal and general muscle differentiation indices decreased if selected OXPHOS enzymes were individually blocked by rotenone, myxothiazol or oligomycin. Summing up, our results pointed to mitochondria as an essential organelle for insulin-dependent myogenesis. Insulin positively affects mitochondrial function by induction of OXPHOS enzymes, which provide energy indispensable for the anabolic effect of insulin.  相似文献   

12.
13.
We previously reported that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] protects primary human keratinocytes against ultraviolet (UV)B-induced apoptosis. Here, we confirmed the anti-apoptotic effect of 1,25(OH)2D3 in keratinocytes, using cisplatin and doxorubicin as apoptotic triggers. We further showed that 1,25(OH)2D3 activates two survival pathways in keratinocytes: the MEK/extracellular signal regulated kinase (ERK) and the phosphatidylinositol 3-kinase (PI-3K)/Akt pathway. Activation of ERK and Akt by 1,25(OH)2D3 was transient, required a minimal dose of 10(-9) M and could be blocked by actinomycin D and cycloheximide. Moreover, inhibition of Akt or ERK activity with respectively a PI-3K inhibitor (LY294002) or MEK inhibitors (PD98059, UO126), partially or totally suppressed the anti-apoptotic capacity of 1,25(OH)2D3. Finally, 1,25(OH)2D3 changed the expression of different apoptosis regulators belonging to the Bcl-2 family. Indeed, 1,25(OH)2D3 treatment increased levels of the anti-apoptotic protein Bcl-2 and decreased levels of the pro-apoptotic proteins Bax and Bad in a time- and dose-dependent way. Induction of Bcl-2 by 1,25(OH)2D3 was further shown to be mediated by ERK and, to a lesser extent, by Akt. In conclusion, 1,25(OH)2D3 clearly protects keratinocytes against apoptosis (1) by activating the MEK/ERK and the PI-3K/Akt survival pathways and (2) by increasing the Bcl-2 to Bax and Bad ratio.  相似文献   

14.
Recently we demonstrated that lipopolysaccharide (LPS) promotes activation of the Ras/ERK cascade in medfly hemocytes and that phagocytosis of Escherichia coli by insect hemocytes is mediated by an integrin-dependent process via the activation of FAK/Src complex (J Biol Chem 273 (1998) 14813; FEBS Letters 496 (2001) 55). In the current study we wanted to further elucidate the effects of LPS on medfly hemocytes, in order to better understand the regulation of the evolutionary conserved signaling mechanisms between insects and mammals. We initially observed that different stimuli, including LPS, E. coli, RGD, fibronectin and heat shock activate hemocyte ERK. The response of hemocytes to these stimuli denoted that hemocyte ERK is evidently stimulated by at least an LPS receptor and via an integrin-mediated process. The medfly hemocytes respond to LPS by changing their morphology, inducing the activation of several signaling pathways, including Ras/MEK/ERK, PI-3K/ERK and Rho pathways and contributing to LPS uptake. Experiments based on inhibitors of specific signaling pathways, such as manumycin A, toxin A, U0126, PD98059 and wortmannin revealed that Ras, MEK and PI-3K are involved in the activation of ERK. Whether PI-3K is an intermediate of Ras/MEK/ERK pathway or activates ERK via other signaling pathway it remains to be elucidated. ERK is not activated via Rho pathway, denoting that Rho may not be an upstream effector molecule of ERK pathway. Regarding the role(s) that these kinases play in hemocytes, it can be suggested that PI-3K and Rho GTPases can modulate hemocyte shape changes, whereas ERK, Ras and MEK cannot. In addition, PI-3K as well as Ras and MEK through ERK activation participate in LPS endocytosis. Therefore, PI-3K shares a dual role; it is involved both in cell shape changes and in LPS endocytosis. Since ERK activation appears to be independent of the integrity of actin filaments, as cytochalasin D and latrunculin A did not block ERK activation, it can be concluded that LPS endocytosis is independent of actin cytoskeleton remodeling as is the case in mammalian systems.  相似文献   

15.
K562 cells contain a Bcr-Abl chimeric gene and differentiate into various lineages in response to different inducers. We studied the role of the mitogen-activated protein kinase (MAPK) kinase 1 (MEK1)/extracellular signal-regulated kinase (ERK) pathway during the erythroid differentiation of K562 cells induced by tyrosine kinase inhibitors (herbimycin A or STI571), using genetically modified cells (constitutively MEK1-activated K562: K562/MEK1, and inducible ERK-inactivated K562: K562/CL100). Basal expression of glycophorin A was markedly reduced in K562/MEK1 cells compared with that in parental cells, while it was augmented in K562/CL100 cells. Herbimycin A and STI571 differentiated K562 cells accompanying with the transient down-regulated ERK. Moreover, the erythroid differentiation was markedly suppressed in K562/MEK1 cells, and early down-regulation of ERK activity was not observed in these cells. In contrast, the induction of ERK-specific phosphatase in K562/CL100 cells potentiated erythroid differentiation. Once the phosphatase was induced, the initial ERK activity became repressed and its early down-regulation by the inhibition of Bcr-Abl was marked and prolonged. These results demonstrate that the erythroid differentiation of K562 cells induced by herbimycin A or STI571 requires the down-regulation of MEK1/ ERK pathway.  相似文献   

16.
17.
18.
Multiple signal transduction pathways, including the Raf/MEK/ERK and PI3K/Akt kinase cascades, play critical roles in transducing growth signals from activated cell surface receptors. Using conditionally and constitutively-active forms of MEK1 and either PI3K or Akt, we demonstrate synergy between these kinases in relieving cytokine-dependence of the FDC-P1 hematopoietic cell line. Cytokine-independent cells were obtained from ?MEK1:ER-infected cells at a frequency of 5 x 10-5 indicating that low frequency of cells expressing ?-estradiol-regulated ?MEK1:ER became factor-independent, while activated PI3K or Akt by themselves did not relieve cytokine-dependence. In contrast, cytokine-independent cells were recovered approximately 25 to 250-fold more frequently from ?MEK1:ER infected cells also infected with either activated PI3K or Akt. MEK/PI3K and MEK/Akt-responsive cells could be maintained long-term as long as either ?-estradiol or the estrogen receptor antagonist 4-hydroxy-tamoxifen (4HT) were provided. The MEK/PI3K/Akt responsive cells were sensitive to both MEK and PI3K/Akt/p70S6K inhibitors. Synergy was observed when inhibitors which targeted both pathways were added together. These results indicate that there is synergy between the Raf/MEK/ERK and PI3K/Akt pathways in terms of abrogation of cytokine-dependence of hematopoietic cells. Likewise, suppression of multiple signal transduction pathways is a more effective means to inhibit cell cycle progression and induce apoptosis in leukemic cells.  相似文献   

19.
Pig-human xenotransplantation can trigger cell-mediated immune responses. We explored the role of gangliosides in inflammation related to immune rejection in xenotransplantation. Co-culture of xenogeneic cells (pig-MSCs and RAW264.7) was used to emulate xenotransplantation conditions. MTT assay results indicated that cell viability was significantly decreased in pADMSCs co-cultured with RAW264.7 cells. GM1 and GM3 were highly expressed in pADMSCs co-cultured with RAW264.7 cells. pADMSCs co-cultured with RAW264.7 cells strongly expressed pro-inflammatory proteins such as COX-2, iNOS, p50, p65, pIκBα, and TNF-α. GM1-knockdown pADMSCs co-cultured with RAW 264.7 cells did not show significantly altered cell viability, but pro-inflammatory proteins were markedly inhibited. Co-culture of pADMSCs with RAW264.7 cells induced significant phosphorylation (p) of JNK1/2 and pERK1/2. However, pERK1/2 and pJNK1/2 were decreased and MEK1/2 and Raf1 were suppressed in GM1-knockdown pADMSCs co-cultured with RAW264.7 cells. Thus, the Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways were significantly upregulated in response to increases of GM1 in co-cultured xenogeneic cells. However, the inflammatory response was suppressed in co-culture of GM1-knockdown pADMSCs with RAW264.7 cells via down-regulation of the Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways. Therefore, the ganglioside GM1 appears to play a major role in the inflammatory response in xenotransplantation via the Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways.  相似文献   

20.
The Siglecs are a subfamily of I-type lectins (immunoglobulin superfamily proteins that bind sugars) that specifically recognize sialic acids. We report the cloning and characterization of human Siglec-9. The cDNA encodes a type 1 transmembrane protein with three extracellular immunoglobulin-like domains and a cytosolic tail containing two tyrosines, one within a typical immunoreceptor tyrosine-based inhibitory motif (ITIM). The N-terminal V-set Ig domain has most amino acid residues typical of Siglecs. Siglec-9 is expressed on granulocytes and monocytes. Expression of the full-length cDNA in COS cells induces sialic-acid dependent erythrocyte binding. A recombinant soluble form of the extracellular domain binds to alpha2-3 and alpha2-6-linked sialic acids. Typical of Siglecs, the carboxyl group and side chain of sialic acid are essential for recognition, and mutation of a critical arginine residue in domain 1 abrogates binding. The underlying glycan structure also affects binding, with Galbeta1-4Glc[NAc] being preferred. Siglec-9 shows closest homology to Siglec-7 and both belong to a Siglec-3/CD33-related subset of Siglecs (with Siglecs-5, -6, and -8). The Siglec-9 gene is on chromosome 19q13.3-13.4, in a cluster with all Siglec-3/CD33-related Siglec genes, suggesting their origin by gene duplications. A homology search of the Drosophila melanogaster and Caenorhabditis elegans genomes suggests that Siglec expression may be limited to animals of deuterostome lineage, coincident with the appearance of the genes of the sialic acid biosynthetic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号