首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
Ca2+,Mg2+- and Ca2+,Mn2+-dependent and acid DNases were isolated from spermatozoa of the sea urchin Strongylocentrotus intermedius. The enzymes have been purified by successive chromatography on DEAE-cellulose, phenyl-Sepharose, Source 15Q, and by gel filtration, and the principal physicochemical and enzymatic properties of the purified enzymes were determined. Ca2+,Mg2+-dependent DNase (Ca,Mg-DNase) is a nuclear protein with molecular mass of 63 kD as the native form and its activity optimum is at pH 7.5. The enzyme activity in the presence of bivalent metal ions decreases in the series (Ca2+ + Mg2+) > Mn2+ = (Ca2+ + Mn2+) > (Mg2+ + EGTA) > Ca2+. Ca,Mg-DNase retains its maximal activity in sea water and is not inhibited by G-actin and N-ethylmaleimide, whereas Zn2+ inhibits the enzyme. The endogenous Ca,Mg-DNase is responsible for the internucleosomal cleavage of chromosomal DNA of spermatozoa. Ca2+,Mn2+-dependent DNase (Ca,Mn-DNase) has molecular mass of 25 kD as the native form and the activity optimum at pH 8.5. The enzyme activity in the presence of bivalent metal ions decreases in the series (Ca2+ + Mn2+) > (Ca2+ + Mg2+) > Mn2+ > (Mg2+ + EGTA). In seawater the enzyme is inactive. Zinc ions inhibit Ca,Mn-DNase. Acid DNase of spermatozoa (A-DNase) is not a nuclear protein, it has molecular mass of 37 kD as a native form and the activity optimum at pH 5.5, it is not activated by bivalent metal ions, and it is inhibited by N-ethylmaleimide and iodoacetic acid. Mechanisms of the endonuclease cleavage of double-stranded DNA have been established for the three enzymes. The possible involvement of DNases from sea urchin spermatozoa in programmed cell death is discussed.  相似文献   

3.
Five new structures of the Q138F HincII enzyme bound to a total of three different DNA sequences and three different metal ions (Ca2+, Mg2+, and Mn2+) are presented. While previous structures were produced from soaking Ca2+ into preformed Q138F HincII/DNA crystals, the new structures are derived from cocrystallization with Ca2+, Mg2+, or Mn2+. The Mn2+-bound structure provides the first view of a product complex of Q138F HincII with cleaved DNA. Binding studies and a crystal structure show how Ca2+ allows trapping of a Q138F HincII complex with noncognate DNA in a catalytically incompetent conformation. Many Q138F HincII/DNA structures show asymmetry, despite the binding of a symmetric substrate by a symmetric enzyme. The various complexes are fit into a model describing the different conformations of the DNA-bound enzyme and show how DNA conformational energetics determine DNA-cleavage rates by the Q138F HincII enzyme.  相似文献   

4.
It has been shown for the first time that polyclonal IgG abzymes (Abzs) with DNase activity from the sera of autoimmune‐prone MRL/MpJ‐lpr mice can be separated by isoelectric focusing into many subfractions having the isoelectric points (pI) from 4.5 to 9, with the maximal activity for Abzs with pI = 6.5–9.0. Affinity chromatography on DNA‐cellulose separated DNase IgGs into many subfractions demonstrating a range of affinities for DNA and different levels of the relative DNase activities (RDA) due to intrinsically bound metals and after addition of external Mg2+, Mn2+, Ca2+, and Mg2++Ca2+. Some fractions significantly increase RDAs in the presence of external ions (Mg2++Ca2+ > Mg2+ > Mn2+ > Ca2+), while each of this cofactor can also inhibit or have no influence on the RDAs of another fractions. It is known that complexes of DNA with histones and other proteins of apoptotic cells are the primary immunogens in systemic lupus erythematosus (SLE). Bovine serum albumin (BSA) and methylated BSA (mBSA) increase the RDAs of only some fractions, while have no effect or inhibit other IgG fractions. The ratio of the RDAs in the presence of all metal ions, BSA, and mBSA was individual for every abzyme fraction. Mn2+ and Ca2+ stimulated accumulation of only relaxed form of supercoiled DNA (scDNA) in the case of all subfractions, while in the presence of Mg2+ antibodies (Abs) of some subfractions (and in the presence of Mn2+ +Ca2+ all subfractions) produced relaxed DNA (rDNA) and linear DNA (linDNA) in a variable extent. The data obtained show that the polyclonal Abzs of mice may be a cocktail of Abs directly to DNA, RNA, and their complexes with proteins and anti‐idiotypic Abs to active centers of different nucleases. The diversity of the physicochemical and kinetic characteristics of the Abzs seems to be significantly widened when pre‐diseased mice spontaneously develop the disease. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Phosphatase activity of a kidney (Na + K)-ATPase preparation was optimally active with Mg2+ plus K+. Mn2+ was less effective and Ca2+ could not substitute for Mg2+. However, adding Ca2+ with Mg2+ or substituting Mn2+ for Mg2+ activated it appreciably in the absence of added K+, and all three divalent cations decreased apparent affinity for K+. Inhibition by Na+ decreased with higher Mg2+ concentrations, when Ca2+ was added, and when Mn2+ was substituted for Mg2+. Dimethyl sulfoxide, which favorsE 2 conformations of the enzyme, increased apparent affinity for K+, whereas oligomycin, which favorsE 1 conformations, decreased it. These observations are interpretable in terms of activation through two classes of cation sites. (i) At divalent cation sites, Mg2+ and Mn2+, favoring (under these conditions)E 2 conformations, are effective, whereas Ca2+, favoringE 1, is not, and monovalent cations complete. (ii) At monovalent cation sites divalent cations compete with K+, and although Ca2+ and Mn2+ are fairly effective, Mg2+ is a poor substitute for K+, while Na+ at these sites favorsE 1 conformations. K+ increases theK m for substrate, but both Ca2+ and Mn2+ decrease it, perhaps by competing with K+. On the other hand, phosphatase activity in the presence of Na+ plus K+ is stimulated by dimethyl sulfoxide, by higher concentrations of Mg2+ and Mn2+, but not by adding Ca2+; this is consistent with stimulation occurring through facilitation of an E1 to E2 transition, perhaps an E1-P to E2-P step like that in the (Na + K)-ATPase reaction sequence. However, oligomycin stimulates phosphatase activity with Mg2+ plus Na+ alone or Mg2+ plus Na+ plus low K+: this effect of oligomycin may reflect acceleration, in the absence of adequate K+, of an alternative E2-P to E1 pathway bypassing the monovalent cation-activated steps in the hydrolytic sequence.  相似文献   

7.
Restriction endonucleases of the PD…D/EXK family need Mg2+ for DNA cleavage. Whereas Mg2+ (or Mn2+) promotes catalysis, Ca2+ (without Mg2+) only supports DNA binding. The role of Mg2+ in DNA cleavage by restriction endonucleases has elicited many hypotheses, differing mainly in the number of Mg2+ involved in catalysis. To address this problem, we measured the Mg2+ and Mn2+ concentration dependence of DNA cleavage by BamHI, BglII, Cfr10I, EcoRI, EcoRII (catalytic domain), MboI, NgoMIV, PspGI, and SsoII, which were reported in co-crystal structure analyses to bind one (BglII and EcoRI) or two (BamHI and NgoMIV) Me2+ per active site. DNA cleavage experiments were carried out at various Mg2+ and Mn2+ concentrations at constant ionic strength. All enzymes show a qualitatively similar Mg2+ and Mn2+ concentration dependence. In general, the Mg2+ concentration optimum (between ∼ 1 and 10 mM) is higher than the Mn2+ concentration optimum (between ∼ 0.1 and 1 mM). At still higher Mg2+ or Mn2+ concentrations, the activities of all enzymes tested are reduced but can be reactivated by Ca2+. Based on these results, we propose that one Mg2+ or Mn2+ is critical for restriction enzyme activation, and binding of a second Me2+ plays a role in modulating the activity. Steady-state kinetics carried out with EcoRI and BamHI suggest that binding of a second Mg2+ or Mn2+ mainly leads to an increase in Km, such that the inhibitory effect of excess Mg2+ or Mn2+ can be overcome by increasing the substrate concentration. Our conclusions are supported by molecular dynamics simulations and are consistent with the structural observations of both one and two Me2+ binding to these enzymes.  相似文献   

8.
Microsomal membranes isolated from barley roots (Hordeum vulgare L. cv. CM72) contained endogenous protein phosphorylation activities that were greatly enhanced by Mn2+. Mg2+ions also stimulated protein phosphorylation, but to a lesser extent than Mn2+. Ca2+ enhanced Mg2+, but not Mn2+-dependent phosphorylation. It is proposed that this strong enhancement by Mn2+ may be due to a greater affinity of Mn2+ than either Ca2+ or Mg2+ for both the Ca2+ and Mg2+ binding sites of certain kinases. Some Mn2+ stimulated kinase activity was eliminated from the membrane by washing with 0.2 mol/L KCl. The KCl extract contained histone and casein kinase activities, and 4 major phosphoproteins that were phosphorylated on serine and threonine residues. Phosphorylation of a 52 kDa polypeptide corresponded with the characteristics of the histone kinase activity and may represent the autophosphorylation of a CDPK-type kinase. Phosphorylation of a 36 kDa polypeptide was Ca2+ stimulated and may represent the autophosphorylation of a different type of unknown kinase. Polypeptides of 18 and 15 kDa had characteristics that suggest they were autophosphorylating subunits of a membrane bound nucleotide di-phosphokinase.  相似文献   

9.
Summary The toxicity of chromium and tin on growth, photosynthetic carbon-fixation, oxygen evolution, heterocyst differentiation and nitrogenase activity ofAnabaena doliolum and its interaction with bivalent cations has been studied. Some interacting cations, viz. Ca2+, Mg2+ and Mn2+, substantially antagonised the toxic effects of chromium and tin with reference to growth, heterocyst differentiation and nitrogenase activity in the following hierarchal sequence: Ca2+ > Mg2+ > Mn2+. However, the sequence of hierarchy was Mg2+ > Ca2+ > Mn2+ for carbon fixation and Mn2+ > Mg2+ > Ca2+ for photosynthetic oxygen evolution. Synergistically inhibitory patterns were noticed for all the parameters, viz. growth,14CO2 uptake, oxygen evolution, heterocyst differentiation and nitrogenase activity ofA. doliolum when Ni2+, Co2+ and Zn2+ were combined with the test metals in the growth medium. These cations followed the following sequence of synergistic inhibition: Ni2+ > Co2+ > Zn2+. Among all the interacting cations, Ca2+, Mg2+ and Mn2+ exhibited antagonistic effects which relieved the test cyanobacterium from metal toxicity. In contrast to this, Ni2+, CO2+ and Zn2+ showed synergistic inhibition which potentiating the toxicity of test metals in the N2-fixing cyanobacteriumA. doliolum. It is evident from the present study that bivalent cations, viz. Ca2+, Mg2+, Mn2+, Ni2+, Co2+ and Zn2+, may appreciably regulate the toxicity of heavy metals in N2-fixing cyanobacteria if present in aquatic media.  相似文献   

10.
This review considers modern data about the set, nature, specificity of action, and other properties of plant endonucleases involved in various forms of programmed cell death (PCD) in various plant tissues (organs). Apoptosis is an obligatory component of plant development; plant development is impossible without apoptosis. In dependence on the conditions of plant growth, this process can be induced by various biotic and abiotic factors, including stressors. Endonucleases accomplishing apoptotic degradation of nuclear material in the plant cell play one of the main roles in PCD. Plant endonucleases belong to at least two classes: (1) Ca2+- and Mg2+-dependent and (2) Zn2+-dependent nucleases. The set and activities of endonucleases change with plant age and during apoptosis in a tissue-specific manner. Apoptosis is accompanied by the induction of specific endonucleases hydrolyzing DNA in chromatin with the formation firstly of large domains and then internucleosomal DNA fragments; the products produced are of about 140 nucleotides in length with their subsequent degradation to low-molecular-weight oligonucleotides and mononucleotides. About 30 enzymes are involved in apoptotic DNA degradation. Histone H1 modulates endonuclease activity; separate (sub)fractions of this nuclear protein can stimulate or inhibit corresponding plant endonucleases. In the nucleus and cytoplasm of the plant cells, Ca2+/Mg2+-dependent endonucleases recognizing substrate DNA methylation status were revealed and described for the first time; their action resembles that of bacterial restrictases, which activity is modulated by the donor of methyl groups, S-adenosylmethionine. This indicates that higher eukaryotes (higher plants) might possess the system of restriction-modification to some degree analogous to that of prokaryotes.  相似文献   

11.
Summary Smooth Muscle Phosphatases II (SMP-I1) which has been purified from turkey gizzards and previously classified as protein phosphatase 2C, is inactive in the absence of divalent cations. Study of the activation of SMP-II by Mg2+ and Mn2+ revealed differences in the modes of activation by these cations. The maximal activation elicited by Mg2+ is 1.5–2.5-fold higher than the maximal Mn2+ activation. However, the latter is achieved at a lower concentration than the maximal Mg2+-activation. Furthermore, at low cation concentrations ( 2 mM), the Mn2+-activated activity is higher than the Mg2+-activated activity. In the presence of both cations, the effect of Mn2+ predominates suggesting that the affinity of the enzyme for Mn2+ is greater than for Mg2+. In contrast to Mg2+ and Mn2+, Ca2+ does not activate SMP-II but it was observed to antagonize the effects of Mg2+ and Mn2+. Ca2+ acts as a competitive inhibitor of Mg2+. However, the inhibitory effect at high Ca2+ concentrations is not completely reversed by increasing the Mg2+ concentration. Mn2+ activation is also inhibited by Ca2+ but to a lesser extent. Ca2+ cannot completely inhibit Mn2+-activation suggesting that SMP-I1 has greater affinity for Mn2+ than for Ca2+. The finding that Ca2+ inhibits the activation of SMP-II raises the possibility that Ca2+ may be a regulator of SMP-II in vivo.Abbreviations SMP-II Smooth Muscle Phosphatase-II - MOPS 3-[N-Morpholine]propane Sulfonic Acid - PLC Phosphorylated Myosin Light Chains  相似文献   

12.
The influence of divalent cations Mg2+, Mn2+, and Ca2+ on the cyclic-AMP-independent protein kinases of the heine-regulated and double-stranded-RNA-activated translational inhibitory protein kinases on self-phosphorylation and heterophosphorylation of the substrate (the 38 000-dalton subunit of initiation factor eIF-2) has been examined, Results show that Mg2+, Mn2+, and Ca2+ affect the activities of these enzymes in the following fashion. Mg2+ supports both self-phosphorylation and heterophosphorylation efficiently. Mn2+ on the other hand supports self-phosphorylation but to a lesser degree the heterophosphorylation, Ca2+ promotes neither self-phosphorylation nor hetero-phosphorylation.  相似文献   

13.
When a Euglena, in a medium containing ATP, is microinjected with 7 × 10−14 l of 0.02 M EDTA, which binds Ca2+ and Mg2+, flagellar motility stops. Flagellar arrest in Chlamydomonas occurs with the injection of 2 × 10−14 l of 0.02 M EDTA. The injection of similar amounts (7 × 10−14 l in Euglena and 3 × 10−14 l in Chlamydomonas) of 0.02 M EGTA, which preferentially binds Ca2+, did not significantly alter flagellar motility. This suggests that a decrease in the internal Ca2+ concentration in Euglena or Chlamydomonas did not stimulate flagellar beating. Further, flagellar motility decreased when internal Mg2+ was chelated. The microinjection of Zn2+ into these cells caused a decrease in flagellar frequency analogous to the decrease in frequency caused by the injection of Ca2+ and EDTA. The microinjection of 7 × 10−14 l of 0.2 M Mn2+ caused an approx. 1.5-fold increase in Euglena flagellar motility. Chlamydomonas flagella, which cease to beat upon impalement in an Mg2+-free medium, resume a flagellar frequency of 18 Hz when injected with 3 × 10−14 l of 0.2 M Mn2+. In the experiments reported here, Mn2+ acts as an analog of Mg2+.  相似文献   

14.
C Zimmer  G Luck  H Triebel 《Biopolymers》1974,13(3):425-453
The effects of metal ions of the first-row transition and of alkaline earth metals on the DNA helix conformation have been studied by uv difference spectra, circular dichroism, and sedimentation measurements. At low ionic strength (10?3 M NaClO4) DNA shows a maximum in the difference absorption spectra in the presence of Zn2+, Mn2+, Co2+, Cd2+, and Ni2+ but not with Mg2+ or Ca2+. The amplitude of this maximum is dependent on GC content as revealed by detailed studies of the DNA-Zn2+ complex of eight different DNA's. Pronounced changes also occur in the CD spectra of DNA transition metal complexes. A transition appears up to a total ratio of approximately 1 Zn2+ per DNA phosphate at 10?3 M NaClO4; then no further change was observed up to high concentrations. The characteristic CD changes are strongly dependent on the double-helical structure of DNA and on the GC content of DNA. Differences were also observed in hydrodynamic properties of DNA metal complexes as revealed by the greater increase of the sedimentation coefficient of native DNA in the presence of transition metal ions. Spectrophotometric acid titration experiments and CD measurements at acidic pH clearly indicate the suppression of protonation of GC base-pair regions on the addition of transition metal ions to DNA. Similar effects were not observed with DNA complexes with alkaline earth metal ions such as Mg2+ or Ca2+. The data are interpreted in terms of a preferential interaction of Zn2+ and of other transition metal ions with GC sites by chelation to the N-7 of guanine and to the phosphate residue. The binding of Zn2+ to DNA disappears between 0.5 M and 1 M NaClO4, but complex formation with DNA is observable again in the presence of highly concentrated solutions of NaClO4 (3?7.2 M NaClO4) or at 0.5 to 2 M Mn2+. At relatively high cation concentration Mg2+ is also effective in changing the DNA comformation. These structural alterations probably result from both the shielding of negatively charged phosphate groups and the breakdown of the water structure along the DNA helix. Differential effects in CD are also observed between Mn2+, Zn2+ on one hand and Mg2+ on the other hand under these conditions. The greater sensitivity of the double-helical conformation of DNA to the action of transition metal ions is due to the affinity of the latter to electron donating sites of the bases resulting from the d electronic configuration of the metal ions. An order of the relative phosphate binding ability to base-site binding ability in native DNA is obtained as follows: Mg2+, Ba2+, < Ca2+ < Fe2+, Ni2+, Co2+ < Mn2+, Zn2+ < Cd2+ < Cu2+. The metal-ion induced conformational changes of the DNA are explained by alternation of the winding angle between base pairs as occurs in the transition from B to C conformation. These findings are used for a tentative molecular interpretation of some effects of Zn2+ and Mn2+ in DNA synthesis reported in the literature.  相似文献   

15.
The hypersensitive response (HR) involves programmed cell death (PCD) in response to pathogen infection. To investigate the pathogen resistance signaling pathway, we previously identified the Arabidopsis mutant cpr22, which displays constitutive activation of multiple defense responses including HR like cell death. The cpr22 mutation has been identified as a 3 kb deletion that fuses two cyclic nucleotide-gated ion channel (CNGC)-encoding genes, ATCNGC11 and ATCNGC12, to generate a novel chimeric gene, ATCNGC11/12. In this study, we conducted a characterization of cell death induced by transient expression of ATCNGC11/12 in Nicotiana benthamiana. Electron microscopic analysis of this cell death showed similar characteristics to PCD, such as plasma membrane shrinkage and vesicle formation. The hallmark of animal PCD, fragmentation of nuclear DNA, was also observed in ATCNGC11/12-induced cell death. The development of cell death was significantly suppressed by caspase-1 inhibitors, suggesting the involvement of caspases in this process. Recently, vacuolar processing enzyme (VPE) was isolated as the first plant caspase-like protein, which is involved in HR development. In VPE-silenced plants development of cell death induced by ATCNGC11/12 was much slower and weaker compared to control plants, suggesting the involvement of VPE as a caspase in ATCNGC11/12-induced cell death. Complementation analysis using a Ca2+ uptake deficient yeast mutant demonstrated that the ATCNGC11/12 channel is permeable to Ca2+. Additionally, calcium channel blockers such as GdCl3 inhibited ATCNGC11/12-induced HR formation, whereas potassium channel blockers did not. Taken together, these results indicate that the cell death that develops in the cpr22 mutant is indeed PCD and that the chimeric channel, ATCNGC11/12, is at the point of, or up-stream of the calcium signal necessary for the development of HR.  相似文献   

16.
cDNA of Aureobasidium melanogenum lipase comprises 1254 bp encoding 417 amino acids, whereas genomic DNA of lipase comprises 1311 bp with one intron (57 bp). The lipase gene contains a putative signal peptide encoding 26 amino acids. The A. melanogenum lipase gene was successfully expressed in Pichia pastoris. Recombinant lipase in an inducible expression system showed the highest lipase activity of 3.8 U/mL after six days of 2% v/v methanol induction. The molecular mass of purified recombinant lipase was estimated as 39 kDa using SDS-PAGE. Optimal lipase activity was observed at 35–37 °C and pH 7.0 using p-nitrophenyl laurate as the substrate. Lipase activity was enhanced by Mg2+, Mn2+, Li+, Ca2+, Ni2+, CHAPS, DTT, and EDTA and inhibited by Hg2+, Ag+, SDS, Tween 20, and Triton X-100. The addition of 10% v/v acetone, DMSO, p-xylene, and octanol increased lipase activity, whereas that of propanol and butanol strongly inhibited it.  相似文献   

17.
Apoptosis and necrosis, two major forms of cell death, can be distinguished morphologically and biochemically. Internucleosomal DNA fragmentation (INDF) is a biochemical hallmark of apoptosis, and caspase-activated DNase (CAD), also known as DNA fragmentation factor 40 kDa (DFF40), is one of the major effector endonucleases. DNase γ, a Mg2+/Ca2+-dependent endonuclease, is also known to generate INDF but its role among other apoptosis-associated endonucleases in cell death is unclear. Here we show that (i) INDF occurs even during necrosis in cell lines, primary cells, and in tissues of mice in vivo, and (ii) DNase γ, but not CAD, is the effector endonuclease for INDF in cells undergoing necrosis. These results document a previously unappreciated role for INDF in necrosis and define its molecular basis.  相似文献   

18.
Summary The outward potassium current of rat cerebellar granule cells in culture was studied with the whole-cell patch-clamp method. Two voltage-dependent components were identified: a slow current, resembling the classical delayed rectifier current, and a fast component, similar to anI A-type current. The slow current was insensitive to 4-aminopyridine and independent of external Ca2+, but significantly inhibited by 3mM tetraethylammonium. The fast current was depressed by external 4-aminopyridine, with an ED50=0.7mM, and it was abolished by removal of divalent cations from the external medium. The sensitivity of the transient outward current to different divalent cations was investigated by equimolar substitution of Ca2+, Mn2+ and Mg2+. In 2.8mM Mn2+, the transient potassium conductance was comparable to that in 2.8mM Ca2+, while in 2.8mM Mg2+ the transient component was drastically reduced, as in the absence of any divalent cations. However, when Ca2+ was present, Mg2+ up to 5mM had no effect. The transient current increased with increasing concentrations of external Ca2+, [Ca2+] o , and the maximum conductancevs. [Ca2+] o curve could be approximated by a one-site model. In addition, the current recorded with 5.5mM BAPTA in the intracellular solution was not different from that recorded in the absence of any Ca2+ buffer. These results suggest that divalent cations modulate the potassium channel interacting with a site on the external side of the cell membrane.  相似文献   

19.
The haploid megagametophyte of white spruce (Picea glauca) seeds undergoes programmed cell death (PCD) during post-germinative seedling growth. Death of the megagametophyte storage parenchyma cells was preceded by reserve mobilization and vacuolation. TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling)-positive nuclei indicated that the first megagametophyte cells to die were those closest to the radicle at the micropylar end of the seed as well as those that comprised the most peripheral and innermost layers at the chalazal end of the seed. The death process was accompanied by nuclear fragmentation and internucleosomal DNA cleavage and the sequential activation of several nucleases. The latter comprised at least two groups: those induced relatively early during post-germinative seedling growth, that had pH optima in the neutral range (33, 31, 17 and 15 kDa), and those induced later that had pH optima in the acidic range (73, 62, 48, 43 and 29 kDa). Activities of all of the nucleases were stimulated by Ca2+, Mg2+ and Mn2+; only the nucleases active at neutral pH were inhibited by Zn2+. The temporal pattern of induction of the neutral and acidic nucleases may suggest that the latter function after tonoplast rupture.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号