首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although one of the priorities in Alzheimer's research is to clarify the filament formation mechanism of the tau protein, it is currently unclear how it is transformed from a normal structure in a neuron. To examine which part and what structural change in the tau protein are involved in its transformation into a pathological entity, the initial in vitro self-aggregation features of each repeat peptide (R1-R4) constituting a three- or four-repeat microtubule-binding domain (3RMBD or 4RMBD) in the tau protein was investigated by measuring both the fluorescence and light scattering (LS) spectra on the same instrument, because these MBD domains constitute the core moiety of the tau paired helical filament (PHF) structure. The conformational features of the R1 and R4 peptides in trifluoroethanol were also investigated by (1)H-NMR and molecular modeling analyses and compared with those of the R2 and R3 peptides. The analyses of the LS spectra clarified (i) the self-aggregation rates of R1-R4, 3RMBD and 4RMBD at a fixed concentration (15 mM), (ii) their minimum concentrations for starting filament extension, and (iii) the concentration dependence of their self-aggregations. The fluorescence analyses showed that the R2 and R3 peptides have high self-aggregation abilities at the extension and nucleation steps, respectively, in their filament formation processes. It was shown that the R2 repeat exhibits a positive synergistic effect on the aggregation of 4RMBD. The R1 and R4 repeats, despite their weak self-aggregation abilities, are necessary for the intact PHF formation of tau MBD, whereas they exerted a negative effect on the R3-driven aggregation of 3RMBD. The conformational analyses showed the importance of the amphipathic conformational features of the R1 to R4 peptides, and the intermolecular disulfide bonding abilities of the R2 and R3 peptides for the PHF formation. On the basis of the present spectral and conformational results, the possible role of each repeat structure in the dimeric formation of MBD at the initial in vitro aggregation stage is discussed.  相似文献   

2.
To clarify the contribution of the three- or four-repeated peptide moiety in tau microtubule-binding domain (MBD) to paired helical filament (PHF) formation, conformational transition accompanied by heparin-induced filament formation was investigated stepwise for four repeat peptides (R1-R4), one three-repeated R1-R3-R4 peptide (3RMBD), and one four-repeated R1-R2-R3-R4 peptide (4RMBD) using a combination of thioflavin S fluorescence and circular dichroism (CD) measurements in a neutral buffer (pH 7.6). The comparison of the fluorescence profile of each repeat peptide with those of 3RMBD and 4RMBD showed the synergistic contribution of R1-R4 to PHF formation of MBD. The CD spectrum measured as a function of filament formation time indicates that: (i) two conformational transitions occur for the filament formations of R3 (from the random structure to the beta-sheet structure) and 3RMBD (from the random structure to the alpha-helix structure), (ii) the filament formations of R2 and 4RMBD proceed via the synchronized conformational transitions of the alpha-helix and random structures, and (iii) the filament formation of 4RMBD is dependent on the aggregation behavior of R2. These data are useful for elucidating the MBD conformational transition in tau PHF formation.  相似文献   

3.
4.
Although one of the priorities in Alzheimer's research is to clarify the filament formation mechanism for the tau protein, it is still unclear how it is transformed from a normal structure in a neuron. To examine the linkage-dependent contribution of each repeat peptide (R1-R4) to filament formation of the three- or four-repeat microtubule-binding domain (MBD) in the tau protein, four two-repeat peptides (R12, R13, R23 and R34) and two three-repeat peptides (R123 and R234) were prepared, and their in vitro self-aggregation was investigated by thioflavin S fluorescence and circular dichroism measurements, and by electron microscopy in neutral buffer (pH 7.6). Comparison of these aggregation behaviors with previous results for single-repeat peptides and wild-type 3RMBD (R134) and 4RMBD (R1234) indicated that (a) the two-repeat R23, not the R2 or R3 single repeat, forms the core structure in self-aggregation of 4RMBD, whereas that of 3RMBD comprises the R3 single repeat, (b) co-existence of R1 and R4 repeats is necessary for the aggregation behavior inherent in 3RMBD and 4RMBD, whereas the R1 or R4 repeat alone functions as a repressor or modifier of the filament formation, (c) 4RMBD aggregation is accompanied by R1-driven transition from random and alpha-helix structures to a beta-sheet structure, whereas 3RMBD aggregation involves three-repeat R134-specific transition from a random structure to an alpha-helix structure without the participation of a beta-sheet structure, and (d) the peptides that include the R1 repeat form a long filament irrespective of the absence or presence of the R4 repeat, whereas those that include the R4 repeat, but not the R1 repeat, form a relatively short filament. To the best of our knowledge, a systematic study of the linkage-dependent contribution of each repeat peptide to the paired helical filament formation of tau MBD has not been carried out previously, and thus the present information is useful for understanding the essence of the filament formation of tau MBD.  相似文献   

5.
Dasgupta B  Chakrabarti P  Basu G 《FEBS letters》2007,581(23):4529-4532
Identification of sequence motifs that favor cis peptide bonds in proteins is important for understanding and designing proteins containing turns mediated by cis peptide conformations. From (1)H NMR solution studies on short peptides, we show that the Pro-Pro peptide bond in Pro-Pro-Phe almost equally populates the cis and trans isomers, with the cis isomer stabilized by a CHc...pi interaction involving the terminal Pro and Phe. We also show that Phe is over-represented at sequence positions immediately following cis Pro-Pro motifs in known protein structures. Our results demonstrate that the Pro-Pro cis conformer in Pro-Pro-Phe sequence motifs is as important as the trans conformer, both in short peptides as well as in natively folded proteins.  相似文献   

6.
The analysis of the self-assembly mechanism of the tau microtubule-binding domain (MBD) could provide the information needed to develop an effective method for the inhibition of the tau filament formation because of its core region that forms the filament. The MBD domain in the living body consists of similar three or four 31- to 32-residue repeats, namely 3RMBD (R134) and 4RMBD (R1234), respectively. The filament formation of the MBD has been mainly investigated by fluorescence spectroscopy utilizing the β-sheet structure-binding signal sensor thioflavin. This method observes the aggregation indirectly, and provides no information on the time-dependent change in aggregation size or volume. Thus, to determine the structure necessary for initiating MBD self-association, the dynamic light scattering (DLS) method was applied to the analysis of the aggregations of 3RMBD, 4RMBD and their component single repeats and shown to be a powerful tool for directly analyzing filament formation. DLS analysis clearly showed that the building unit for initiating the aggregation is the intermolecular R3-R3 disulfide-bonded dimer for 3RMBD and the intramolecular R2-R3 disulfide-bonded monomer for 4RMBD, and their aggregation processes under physiological condition differ from each other, which has not been clearly revealed by the conventional fluorescence method. The repeat-number-dependent aggregation model of MBD, together with the function of each repeat, reported in this paper should help to devise a method of preventing tau PHF formation.  相似文献   

7.
Peptide XT-7 (GLLGP5LLKIA10AKVGS15NLL.NH2) is a cationic, leucine-rich peptide, first isolated from skin secretions of the frog, Silurana tropicalis (Pipidae). The peptide shows potent, broad-spectrum antimicrobial activity but its therapeutic potential is limited by haemolytic activity (LC50 = 140 µM). The analogue [G4K]XT-7, however, retains potent antimicrobial activity but is non-haemolytic (LC50 > 500 µM). In order to elucidate the molecular basis for this difference in properties, the three dimensional structures of XT-7 and the analogue have been investigated by proton NMR spectroscopy and molecular modelling. In aqueous solution, both peptides lack secondary structure. In a 2,2,2-trifluoroethanol (TFE-d3)-H2O mixed solvent system, XT-7 is characterised by a right handed α-helical conformation between residues Leu3 and Leu17 whereas [G4K]XT-7 adopts a more restricted α-helical conformation between residues Leu6 and Leu17. A similar conformation for XT-7 in 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) micellular media was observed with a helical segment between Leu3 and Leu17. However, differences in side chain orientations restricting the hydrophilic residues to a smaller patch resulted in an increased hydrophobic surface relative to the conformation in TFE-H2O. Molecular modelling of the structures obtained in our study demonstrates the amphipathic character of the helical segments. It is proposed that the marked decrease in haemolytic activity produced by the substitution Gly4 → Lys in XT-7 arises from a decrease in both helicity and hydrophobicity. These studies may facilitate the development of potent but non-toxic anti-infective agents based upon the structure of XT-7.  相似文献   

8.
Le Lan C  Neumann JM  Jamin N 《FEBS letters》2006,580(22):5301-5305
Circular dichroism (CD) and NMR spectroscopy were used to study the conformational properties of two synthetic peptides, D82-R101 and D82-I109, encompassing the caveolin scaffolding domain (D82-R101), in the presence of dodecylphosphocholine (DPC) micelles. Our data show that a stable helical conformation of the caveolin scaffolding domain in a membrane mimicking system is only obtained for the peptide including the L102-I109 hydrophobic stretch, a part of the caveolin intra-membrane domain. Through chemical shift variations, an ensemble of six residues of the D82-L109 peptide, mainly located in the V(94)TKYWFYR(101) motif were found to detect the presence of phosphatidylserine solubilized in DPC micelles. Our results constitute a first step for elucidating at a residue level the conformational properties of the central region of the caveolin-1 protein.  相似文献   

9.
Worldwide bacterial resistance to traditional antibiotics has drawn much research attention to naturally occurring antimicrobial peptides (AMPs) owing to their potential as alternative antimicrobials. Structural studies of AMPs are essential for an in-depth understanding of their activity, mechanism of action, and in guiding peptide design. Two-dimensional solution proton NMR spectroscopy has been the major tool. In this article, we describe the applications of natural abundance 13C NMR spectroscopy that provides complementary information to 2D 1H NMR. The correlation of 13Cα secondary shifts with both 3D structure and heteronuclear 15N NOE values indicates that natural abundance carbon chemical shifts are useful probes for backbone structure and dynamics of membrane peptides. Using human LL-37-derived peptides (GF-17, KR-12, and RI-10), as well as amphibian antimicrobial and anticancer peptide aurein 1.2 and its analog LLAA, as models, we show that the cross peak intensity plots of 2D 1H-13Cα HSQC spectra versus residue number present a wave-like pattern (HSQC wave) where key hydrophobic residues of micelle-bound peptides are located in the troughs with weaker intensities, probably due to fast exchange between the free and bound forms. In all the cases, the identification of aromatic phenylalanines as a key membrane-binding residue is consistent with previous intermolecular Phe-lipid NOE observations. Furthermore, mutation of one of the key hydrophobic residues of KR-12 to Ala significantly reduced the antibacterial activity of the peptide mutants. These results illustrate that natural abundance heteronuclear-correlated NMR spectroscopy can be utilized to probe backbone structure and dynamics, and perhaps to map key membrane-binding residues of peptides in complex with micelles. 1H-13Cα HSQC wave, along with other NMR waves such as dipolar wave and chemical shift wave, offers novel insights into peptide-membrane interactions from different angles.  相似文献   

10.
The LAH4 family of histidine-rich peptides exhibits potent antimicrobial and DNA transfection activities, both of which require interactions with cellular membranes. The bilayer association of the peptides has been shown to be strongly pH-dependent, with in-planar alignments under acidic conditions and transmembrane orientations when the histidines are discharged. Therefore, we investigated the pH- and temperature-dependent conformations of LAH4 in DPC micellar solutions and in a TFE/PBS solvent mixture. In the presence of detergent and at pH 4.1, LAH4 adopts helical conformations between residues 9 and 24 concomitantly with a high hydrophobic moment. At pH 6.1, a helix-loop-helix structure forms with a hinge encompassing residues His10-Ala13. The data suggest that the high density of histidine residues and the resulting electrostatic repulsion lead to both a decrease in the pK values of the histidines and a less stable α-helical conformation of this region. The hinged structure at pH 6.1 facilitates membrane anchoring and insertion. At pH 7.8, the histidines are uncharged and an extended helical conformation including residues 4-21 is again obtained. LAH4 thus exhibits a high degree of conformational plasticity. The structures provide a stroboscopic view of the conformational changes that occur during membrane insertion, and are discussed in the context of antimicrobial activity and DNA transfection.  相似文献   

11.
Affibody molecules constitute a class of engineered binding proteins based on the 58-residue three-helix bundle Z domain derived from staphylococcal protein A (SPA). Affibody proteins are selected as binders to target proteins by phage display of combinatorial libraries in which typically 13 side-chains on the surface of helices 1 and 2 in the Z domain have been randomized. The Z(Taq):anti-Z(Taq) affibody-affibody complex, consisting of Z(Taq), originally selected as a binder to Taq DNA polymerase, and anti-Z(Taq), selected as binder to Z(Taq), is formed with a dissociation constant K(d) approximately 100 nM. We have determined high-precision solution structures of free Z(Taq) and anti-Z(Taq), and the Z(Taq):anti-Z(Taq) complex under identical experimental conditions (25 degrees C in 50 mM NaCl with 20 mM potassium phosphate buffer at pH 6.4). The complex is formed with helices 1 and 2 of anti-Z(Taq) in perpendicular contact with helices 1 and 2 of Z(Taq). The interaction surface is large ( approximately 1670 A(2)) and unusually non-polar (70 %) compared to other protein-protein complexes. It involves all varied residues on anti-Z(Taq), most corresponding (Taq DNA polymerase binding) side-chains on Z(Taq), and several additional side-chain and backbone contacts. Other notable features include a substantial rearrangement (induced fit) of aromatic side-chains in Z(Taq) upon binding, a close contact between glycine residues in the two subunits that might involve aliphatic glycine Halpha to backbone carbonyl hydrogen bonds, and four hydrogen bonds made by the two guanidinium N(eta)H(2) groups of an arginine side-chain. Comparisons of the present structure with other data for affibody proteins and the Z domain suggest that intrinsic binding properties of the originating SPA surface might be inherited by the affibody binders. A thermodynamic characterization of Z(Taq) and anti-Z(Taq) is presented in an accompanying paper.  相似文献   

12.
Partitioning of small proteins and peptides from the aqueous to membrane phase is often coupled with folding. In this work we examine the binding and folding of the kinin peptide, bradykinin (BK), in the presence of the ganglioside monosialylated 1 (GM1) micelle. Using two-dimensional NMR techniques, we have shown that at low concentration, GM1 micelle is able to induce a turn conformation to BK. A pulsed-field gradient diffusion NMR study indicated that the peptide partitions into the GM1 micelle with a DeltaG(part) of -3.14 +/- 0.03 kcal/mol. A saturation transfer difference (STD) NMR study indicated that the binding is mostly through hydrophobic residues.  相似文献   

13.
Human β-defensins (hBDs) are believed to function as alarm molecules that stimulate the adaptive immune system when a threat is present. In addition to its antimicrobial activity, defensins present other activities such as chemoattraction of a range of different cell types to the sites of inflammation. We have solved the structure of the hBD6 by NMR spectroscopy that contains a conserved β-defensin domain followed by an extended C-terminus. We use NMR to monitor the interaction of hBD6 with microvesicles shed by breast cancer cell lines and with peptides derived from the extracellular domain of CC chemokine receptor 2 (Nt-CCR2) possessing or not possessing sulfation on Tyr26 and Tyr28. The NMR-derived model of the hBD6/CCR2 complex reveals a contiguous binding surface on hBD6, which comprises amino acid residues of the α-helix and β2–β3 loop. The microvesicle binding surface partially overlaps with the chemokine receptor interface. NMR spin relaxation suggests that free hBD6 and the hBD6/CCR2 complex exhibit microsecond-to-millisecond conformational dynamics encompassing the CCR2 binding site, which might facilitate selection of the molecular configuration optimal for binding. These data offer new insights into the structure–function relation of the hBD6–CCR2 interaction, which is a promising target for the design of novel anticancer agents.  相似文献   

14.
α-Conotoxins are small disulfide-constrained peptides from cone snails that act as antagonists at specific subtypes of nicotinic acetylcholine receptors (nAChRs). The 13-residue peptide α-conotoxin RgIA (α-RgIA) is a member of the α-4,3 family of α-conotoxins and selectively blocks the α9α10 nAChR subtype, in contrast to another well-characterized member of this family, α-conotoxin ImI (α-ImI), which is a potent inhibitor of the α7 and α3β2 nAChR subtypes. In this study, we have altered side chains in both the four-residue and the three-residue loops of α-RgIA, and have modified its C-terminus. The effects of these changes on activity against α9α10 and α7 nAChRs were measured; the solution structures of α-RgIA and its Y10W, D5E, and P6V analogues were determined from NMR data; and resonance assignments were made for α-RgIA [R9A]. The structures for α-RgIA and its three analogues were well defined, except at the chain termini. Comparison of these structures with reported structures of α-ImI reveals a common two-loop backbone architecture within the α-4,3 family, but with variations in side-chain solvent accessibility and orientation. Asp5, Pro6, and Arg7 in loop 1 are critical for blockade of both the α9α10 and the α7 subtypes. In loop 2, α-RgIA [Y10W] had activity near that of wild-type α-RgIA, with high potency for α9α10 and low potency for α7, and had a structure similar to that of wild type. By contrast, Arg9 in loop 2 is critical for specific binding to the α9α10 subtype, probably because it is larger and more solvent accessible than Ala9 in α-ImI. Our findings contribute to a better understanding of the molecular basis for antagonism of the α9α10 nAChR subtype, which is a target for the development of analgesics for the treatment of chronic neuropathic pain.  相似文献   

15.
Tyrosine sulfation of the chemokine receptor CXCR4 enhances its interaction with the chemokine SDF-1alpha. Given similar post-translational modification of other receptors, including CCR5, CX3CR1 and CCR2b, tyrosine sulfation may be of universal importance in chemokine signaling. N-terminal domains from seven transmembrane chemokine receptors have been employed for structural studies of chemokine-receptor interactions, but never in the context of proper post-translational modifications known to affect function. A CXCR4 peptide modified at position 21 by expressed tyrosylprotein sulfotransferase-1 and unmodified peptide are both disordered in solution, but bind SDF-1alpha with low micromolar affinities. NMR and fluorescence polarization measurements showed that the CXCR4 peptide stabilizes dimeric SDF-1alpha, and that sulfotyrosine 21 binds a specific site on the chemokine that includes arginine 47. We conclude that the SDF-1alpha dimer preferentially interacts with receptor peptide, and residues beyond the extreme N-terminal region of CXCR4, including sulfotyrosine 21, make specific contacts with the chemokine ligand.  相似文献   

16.
Tropomyosin is a coiled-coil protein that binds head-to-tail along the length of actin filaments in eukaryotic cells, stabilizing them and providing protection from severing proteins. Tropomyosin cooperatively regulates actin's interaction with myosin and mediates the Ca2+ -dependent regulation of contraction by troponin in striated muscles. The N-terminal and C-terminal ends are critical functional determinants that form an "overlap complex". Here we report the solution NMR structure of an overlap complex formed of model peptides. In the complex, the chains of the C-terminal coiled coil spread apart to allow insertion of 11 residues of the N-terminal coiled coil into the resulting cleft. The plane of the N-terminal coiled coil is rotated 90 degrees relative to the plane of the C terminus. A consequence of the geometry is that the orientation of postulated periodic actin binding sites on the coiled-coil surface is retained from one molecule to the next along the actin filament when the overlap complex is modeled into the X-ray structure of tropomyosin determined at 7 Angstroms. Nuclear relaxation NMR data reveal flexibility of the junction, which may function to optimize binding along the helical actin filament and to allow mobility of tropomyosin on the filament surface as it switches between regulatory states.  相似文献   

17.
Interaction of CC chemokine receptor 5 (CCR5) with the human immunodeficiency virus type 1 (HIV-1) gp120/CD4 complex involves its amino-terminal domain (Nt-CCR5) and requires sulfation of two to four tyrosine residues in Nt-CCR5. The conformation of a 27-residue Nt-CCR5 peptide, sulfated at Y10 and Y14, was studied both in its free form and in a ternary complex with deglycosylated gp120 and a CD4-mimic peptide. NMR experiments revealed a helical conformation at the center of Nt-CCR5(1-27), which is induced upon gp120 binding, as well as a helical propensity for the free peptide. A well-defined structure for the bound peptide was determined for residues 7-23, increasing by 2-fold the length of Nt-CCR5's known structure. Two-dimensional saturation transfer experiments and measurement of relaxation times highlighted Nt-CCR5 residues Y3, V5, P8-T16, E18, I23 and possibly D2 as the main binding determinant. A calculated docking model for Nt-CCR5(1-27) suggests that residues 2-22 of Nt-CCR5 interact with the bases of V3 and C4, while the C-terminal segment of Nt-CCR5(1-27) points toward the target cell membrane, reflecting an Nt-CCR5 orientation that differs by 180° from that of a previous model. A gp120 site that could accommodate CCR5Y3 in a sulfated form has been identified. The present model attributes a structural basis for binding interactions to all gp120 residues previously implicated in Nt-CCR5 binding. Moreover, the strong interaction of sulfated CCR5Tyr14 with gp120Arg440 revealed by the model and the previously found correlation between E322 and R440 mutations shed light on the role of these residues in HIV-1 phenotype conversion, furthering our understanding of CCR5 recognition by HIV-1.  相似文献   

18.
As is typical for S100-target protein interactions, a Ca2+-dependent conformational change in S100A1 is required to bind to a 12-residue peptide (TRTK12) derived from the actin-capping protein CapZ. In addition, the Ca2+-binding affinity of S100A1 is found to be tightened (greater than threefold) when TRTK12 is bound. To examine the biophysical basis for these observations, we determined the solution NMR structure of TRTK12 in a complex with Ca2+-loaded S100A1. When bound to S100A1, TRTK12 forms an amphipathic helix (residues N6 to S12) with several favorable hydrophobic interactions observed between W7, I10, and L11 of the peptide and a well-defined hydrophobic binding pocket in S100A1 that is only present in the Ca2+-bound state. Next, the structure of S100A1-TRTK12 was compared to that of another S100A1-target complex (i.e., S100A1-RyRP12), which illustrated how the binding pocket in Ca2+-S100A1 can accommodate peptide targets with varying amino acid sequences. Similarities and differences were observed when the structures of S100A1-TRTK12 and S100B-TRTK12 were compared, providing insights regarding how more than one S100 protein can interact with the same peptide target. Such comparisons, including those with other S100-target and S100-drug complexes, provide the basis for designing novel small-molecule inhibitors that could be specific for blocking one or more S100-target protein interactions.  相似文献   

19.
Chromodomain from heterochromatin protein 1 and polycomb protein is known to be a lysine-methylated histone H3 tail-binding module. Chromo-helicase/ATPase DNA-binding protein 1 (CHD1) is an ATP-dependent chromatin remodeling factor, containing two tandem chromodomains. In human CHD1, both chromodomains are essential for specific binding to a K4 methylated histone H3 (H3 MeK4) peptide and are found to bind cooperatively in the crystal structure. For the budding yeast homologue, Chd1, the second but not the first chromodomain was once reported to bind to an H3 MeK4 peptide. Here, we reveal that neither the second chromodomain nor a region containing tandem chromodomains from yeast Chd1 bind to any lysine-methylated or arginine-methylated histone peptides that we examined. In addition, we examined the structures of the chromodomains from Chd1 by NMR. Although the tertiary structure of the region containing tandem chromodomains could not be obtained, the secondary structure deduced from NMR is well conserved in the tertiary structures of the corresponding first and second chromodomains determined individually by NMR. Both chromodomains of Chd1 demonstrate a structure similar to that of the corresponding part of CHD1, consisting of a three-stranded beta-sheet followed by a C-terminal alpha-helix. However, an additional helix between the first and second beta-strands, which is found in both of the first chromodomains of Chd1 and CHD1, is positioned in an entirely different manner in Chd1 and CHD1. In human CHD1 this helix forms the peptide-binding site. The amino acid sequences of the chromodomains could be well aligned on the basis of these structures. The alignment showed that yeast Chd1 lacks several key functional residues, which are responsible for specific binding to a methylated lysine residue in other chromodomains. Chd1 is likely to have no binding affinity for any H3 MeK peptide, as found in other chromodomain proteins.  相似文献   

20.
Aurein 1.2 is an antimicrobial and anticancer peptide isolated from an Australian frog. To improve our understanding of the mechanism of action, two series of peptides were designed. The first series includes the N-terminal membrane anchor of bacterial glucose-specific enzyme IIA, aurein 1.2, and a newly identified aurein 1.2 analog from human LL-37 (LLAA). The order of antibacterial activity is LLAA > aurein 1.2 >> the membrane anchor (inactive). The structure of LLAA in detergent micelles was determined by 1H NMR spectroscopy, including structural refinement by natural abundance 13Cα, 13Cβ, and 15N chemical shifts. The hydrophobic surface area of the 3D structure is related to the retention time of the peptide on a reverse-phase HPLC column. The higher activity of LLAA compared to aurein 1.2 was attributed to additional cationic residues that enhance the membrane perturbation potential. The second peptide series was created by changing the C-terminal phenylalanine (F13) of aurein 1.2 to either phenylglycine or tryptophan. A closer or further location of the aromatic rings to the peptide backbone in the mutants relative to F13 is proposed to cause a drop in activity. Phenylglycine with unique chemical shifts may be a useful NMR probe for structure-activity relationship studies of antimicrobial peptides. To facilitate potential future use for NMR studies, random-coil chemical shifts for phenylglycine (X) were measured using the synthetic peptide GGXGG. Aromatic rings of phenylalanines in all the peptides penetrated 2-5 Å below the lipid head group and are essential for membrane targeting as illustrated by intermolecular peptide-lipid NOE patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号