首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Determining the role of lipid raft nanodomains in G protein-coupled receptor signaling remains fraught by the lack of assays directly monitoring rafts in native membranes. We thus combined extensive biochemical and pharmacological approaches to a nanoscale strategy based on bioluminescence resonance energy transfer (BRET) to assess the spatial and functional influence of cholesterol-rich liquid-ordered lipid nanodomains on beta(2) adrenergic receptor (beta(2)AR) signaling. The data revealed that whereas beta(2)AR did not partition within liquid-ordered lipid phase, a pool of G protein and adenylyl cyclase (AC) were sequestered in these domains. Destabilization of the liquid-ordered phase by cholesterol depletion led to a lateral redistribution of Galpha(s) and AC that favored interactions between the receptor and its signaling partners as assessed by BRET. This resulted in an increased basal and agonist-promoted beta(2)AR-stimulated cAMP production that was partially dampened as a result of constitutive protein kinase A-dependent phosphorylation and desensitization of the receptor. This restraining influence of nanodomains on beta(2)AR signaling was further substantiated by showing that liquid-ordered lipid phase stabilization using caveolin overexpression or increasing membrane cholesterol amount led to an inhibition of beta(2)AR-associated signaling. Given the emerging concept that clustering of receptors and effectors into signaling platforms contributes to the efficacy and selectivity of signal transduction, our results support a model whereby cholesterol-promoted liquid-ordered lipid phase-embedding G(s) and AC allows their lateral separation from the receptor, thus restraining the basal activity and controlling responsiveness of beta(2)AR signaling machinery within larger signaling platforms.  相似文献   

2.
3.
4.
TGF-beta signaling: a tale of two responses   总被引:10,自引:0,他引:10  
  相似文献   

5.
6.
TGF-beta signaling from receptors to the nucleus   总被引:13,自引:0,他引:13  
  相似文献   

7.
Schistosoma mansoni: TGF-beta signaling pathways   总被引:1,自引:0,他引:1  
Schistosome parasites have co-evolved an intricate relationship with their human and snail hosts as well as a novel interplay between the adult male and female parasites. We review the role of the TGF-beta signaling pathway in parasite development, host-parasite interactions and male-female interactions. The data to date support multiple roles for the TGF-beta signaling pathway throughout schistosome development, in particular, in the tegument which is at the interface with the host and between the male and female schistosome, development of vitelline cells in female worms whose genes and development are regulated by a stimulus from the male schistosome and embryogenesis of the egg. The human ligand TGF-beta1 has been demonstrated to regulate the expression of a schistosome target gene that encodes a gynecophoric canal protein in the schistosome worm itself. Studies on signaling in schistosomes opens a new era for investigation of host-parasite and male-female interactions.  相似文献   

8.

Background

Angiogenesis is important in physiological and pathological conditions, as blood vessels provide nutrients and oxygen needed for tissue growth and survival. Therefore, targeting angiogenesis is a prominent strategy in both tissue engineering and cancer treatment. However, not all of the approaches to promote or inhibit angiogenesis lead to successful outcomes. Angiogenesis-based therapies primarily target pro-angiogenic factors such as vascular endothelial growth factor-A (VEGF) or fibroblast growth factor (FGF) in isolation. However, pre-clinical and clinical evidence shows these therapies often have limited effects. To improve therapeutic strategies, including targeting FGF and VEGF in combination, we need a quantitative understanding of the how the promoters combine to stimulate angiogenesis.

Results

In this study, we trained and validated a detailed mathematical model to quantitatively characterize the crosstalk of FGF and VEGF intracellular signaling. This signaling is initiated by FGF binding to the FGF receptor 1 (FGFR1) and heparan sulfate glycosaminoglycans (HSGAGs) or VEGF binding to VEGF receptor 2 (VEGFR2) to promote downstream signaling. The model focuses on FGF- and VEGF-induced mitogen-activated protein kinase (MAPK) signaling and phosphorylation of extracellular regulated kinase (ERK), which promotes cell proliferation. We apply the model to predict the dynamics of phosphorylated ERK (pERK) in response to the stimulation by FGF and VEGF individually and in combination. The model predicts that FGF and VEGF have differential effects on pERK. Additionally, since VEGFR2 upregulation has been observed in pathological conditions, we apply the model to investigate the effects of VEGFR2 density and trafficking parameters. The model predictions show that these parameters significantly influence the response to VEGF stimulation.

Conclusions

The model agrees with experimental data and is a framework to synthesize and quantitatively explain experimental studies. Ultimately, the model provides mechanistic insight into FGF and VEGF interactions needed to identify potential targets for pro- or anti-angiogenic therapies.
  相似文献   

9.
Structural insight into the mechanisms of Wnt signaling antagonism by Dkk   总被引:2,自引:0,他引:2  
Dickkopf (Dkk) proteins are antagonists of the canonical Wnt signaling pathway and are crucial for embryonic cell fate and bone formation. Wnt antagonism of Dkk requires the binding of the C-terminal cysteine-rich domain of Dkk to the Wnt coreceptor, LRP5/6. However, the structural basis of the interaction between Dkk and low density lipoprotein receptor-related protein (LRP) 5/6 is unknown. In this study, we examined the structure of the Dkk functional domain and elucidated its interactions with LRP5/6. Using NMR spectroscopy, we determined the solution structure of the C-terminal cysteine-rich domain of mouse Dkk2 (Dkk2C). Then, guided by mutagenesis studies, we docked Dkk2C to the YWTD beta-propeller domains of LRP5/6 and showed that the ligand binding site of the third LRP5/6 beta-propeller domain matches Dkk2C best, suggesting that this domain binds to Dkk2C with higher affinity. Such differential binding affinity is likely to play an essential role in Dkk function in the canonical Wnt pathway.  相似文献   

10.
The araBAD operon encodes three different enzymes required for catabolism of L-arabinose, which is one of the most abundant monosaccharides in nature. L-ribulokinase, encoded by the araB gene, catalyzes conversion of L-ribulose to L-ribulose-5-phosphate, the second step in the catabolic pathway. Unlike other kinases, ribulokinase exhibits diversity in substrate selectivity and catalyzes phosphorylation of all four 2-ketopentose sugars with comparable k(cat) values. To understand ribulokinase recognition and phosphorylation of a diverse set of substrates, we have determined the X-ray structure of ribulokinase from Bacillus halodurans bound to L-ribulose and investigated its substrate and ATP co-factor binding properties. The polypeptide chain is folded into two domains, one small and the other large, with a deep cleft in between. By analogy with related sugar kinases, we identified (447)GGLPQK(452) as the ATP-binding motif within the smaller domain. L-ribulose binds in the cleft between the two domains via hydrogen bonds with the side chains of highly conserved Trp126, Lys208, Asp274, and Glu329 and the main chain nitrogen of Ala96. The interaction of L-ribulokinase with L-ribulose reveals versatile structural features that help explain recognition of various 2-ketopentose substrates and competitive inhibition by L-erythrulose. Comparison of our structure to that of the structures of other sugar kinases revealed conformational variations that suggest domain-domain closure movements are responsible for establishing the observed active site environment.  相似文献   

11.
Mechanisms of TGF-beta signaling from cell membrane to the nucleus   总被引:126,自引:0,他引:126  
Shi Y  Massagué J 《Cell》2003,113(6):685-700
  相似文献   

12.
13.
14.
The ever-increasing complexity of TGF-beta signaling   总被引:4,自引:0,他引:4  
  相似文献   

15.
The proper formation and function of the vertebrate heart requires a multitude of specific cell and tissue interactions. These interactions drive the early specification and assembly of components of the cardiovascular system that lead to a functioning system before the attainment of the definitive cardiac and vascular structures seen in the adult. Many of these adult structures are hypothesized to require both proper molecular and physical cues to form correctly. Unlike any other organ system in the embryo, the cardiovascular system requires concurrent function and formation for the embryo to survive. An example of this complex interaction between molecular and physical cues is the formation of the valves of the heart. Both molecular cues that regulate cell transformation, migration, and extracellular matrix deposition, and physical cues emanating from the beating heart, as well as hemodynamic forces, are required for valvulogenesis. This review will focus on molecules and emerging pathways that guide early events in valvulogenesis.  相似文献   

16.
Ski and SnoN: negative regulators of TGF-beta signaling   总被引:8,自引:0,他引:8  
Ski and SnoN are unique proto-oncoproteins in that they can induce both oncogenic transformation and terminal muscle differentiation when expressed at high levels. Recent studies using in vitro and in vivo approaches have begun to unravel the complex roles of Ski and SnoN in tumorigenesis and embryonic development. The identification of Ski and SnoN as important negative regulators of signal transduction by the transforming growth factor-beta superfamily of cytokines provides a valuable molecular basis for the complex functions of Ski and SnoN.  相似文献   

17.
Møller, A. Pape. 2000. Sexual selection and conservation: a Paleartic-African perspective. Ostrich 71 (1): 361

Sexual selection may give rise to an increased general level of stress, either because intense directional selection reduces the ability of individuals to control the stable development of their phenotype, or because extravagant secondary sexual characters by themselves impose stress on their bearers. Sexual selection often acts against individuals with deviant, asymmetric phenotypes, particularly if such phenotypic deviance occurs in secondary sexual characters. Such characters also appear to be more affected by adverse environmental conditions than ordinary morphological characters. Sexual selection may give rise to relatively large body size, exaggeration of costly secondary sexual characters, an overall increase in body size within a lineage, and an increased risk of extinction. Reduced stress resistance caused by intense sexual selection may contribute to this trend. In accordance with this hypothesis, introductions of birds to islands are more likely to fail if the species is sexually dichromatic. Species that have gone extinct worldwide and threatened species are also more often dichromatic than expected by chance. These observations suggest that sexual selection may increase the risks of extinction, and that highly sexually selected may birds deserve more attention in conservation.  相似文献   

18.
Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase whose focal adhesion targeting (FAT) domain interacts with other focal adhesion molecules in integrin-mediated signaling. Localization of activated FAK to focal adhesions is indispensable for its function. Here we describe a solution structure of the FAT domain bound to a peptide derived from paxillin, a FAK-binding partner. The FAT domain is composed of four helices that form a "right-turn" elongated bundle; the globular fold is mainly maintained by hydrophobic interactions. The bound peptide further stabilizes the structure. Certain signaling events such as phosphorylation and molecule interplay may induce opening of the helix bundle. Such conformational change is proposed to precede departure of FAK from focal adhesions, which starts focal adhesion turnover.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号