共查询到20条相似文献,搜索用时 0 毫秒
1.
CD4+CD25+ regulatory T cells in HIV infection 总被引:9,自引:0,他引:9
The immune system faces the difficult task of discerning between foreign, potentially pathogen-derived antigens and self-antigens. Several mechanisms, including deletion of self-reactive T cells in the thymus, have been shown to contribute to the acceptance of self-antigens and the reciprocal reactivity to foreign antigens. Over the last decade it has become increasingly clear that CD4(+)CD25(+) T(Reg) cells are crucial for maintenance of T cell tolerance to self-antigens in the periphery, and to avoid development of autoimmune disorders. Recently, evidence has also emerged that demonstrates that CD4(+)CD25(+) T(Reg) cells can also suppress T cell responses to foreign pathogens, including viruses such as HIV. In this article we review the current knowledge and potential role of CD4(+)CD25(+) T(Reg) cells in HIV infection. 相似文献
2.
Although chronic immune activation correlates with CD4(+) T cell loss in HIV infection, an understanding of the factors mediating T cell depletion remains incomplete. We propose that reduced expression of CD127 (IL-7 receptor alpha chain, IL-7Ralpha), induced by immune activation, contributes to CD4(+) T cell loss in HIV infection. In particular, loss of CD127 on central memory CD4(+) T cells (T(CM)) severely restrains the regenerative capacity of the memory component of the immune system, resulting in a limited ability to control T cell homeostasis. Studies from both pathogenic and controlled HIV infection indicate that the containment of immune activation and preservation of CD127 expression are critical to the stability of CD4(+) T cells in infection. A better understanding of the factors regulating CD127 expression in HIV disease, particularly on T(CM) cells, might unveil new approaches exploiting the IL-7/IL-7R receptor pathway to restore T cell homeostasis and promote immune reconstitution in HIV infection. 相似文献
3.
CD4+CD25+调节性T细胞的作用机制及临床应用 总被引:1,自引:0,他引:1
免疫应答通常是机体对各种异源物质的重要防御机制.但有些免疫应答会造成机体的损伤.近来,大量研究发现免疫系统内存在一类CD4 CD25 调节性T淋巴(CD4 CD25 regulatory T cell,CD4 CD25 TReg),在阻止大量免疫介导的疾病中起重要作用.该文从自身免疫耐受、维持T细胞自稳态、肿瘤免疫等方面介绍这类细胞的免疫调节作用. 相似文献
4.
Weiss KA Christiaansen AF Fulton RB Meyerholz DK Varga SM 《Journal of immunology (Baltimore, Md. : 1950)》2011,187(6):3145-3154
The host immune response is believed to contribute to the severity of pulmonary disease induced by acute respiratory syncytial virus (RSV) infection. Because RSV-induced pulmonary disease is associated with immunopathology, we evaluated the role of IL-10 in modulating the RSV-specific immune response. We found that IL-10 protein levels in the lung were increased following acute RSV infection, with maximum production corresponding to the peak of the virus-specific T cell response. The majority of IL-10-producing cells in the lung during acute RSV infection were CD4(+) T cells. The IL-10-producing CD4(+) T cells included Foxp3(+) regulatory T cells, Foxp3(-) CD4(+) T cells that coproduce IFN-γ, and Foxp3(-) CD4(+) T cells that do not coproduce IFN-γ. RSV infection of IL-10-deficient mice resulted in more severe disease, as measured by increased weight loss and airway resistance, as compared with control mice. We also observed an increase in the magnitude of the RSV-induced CD8(+) and CD4(+) T cell response that correlated with increased disease severity in the absence of IL-10 or following IL-10R blockade. Interestingly, IL-10R blockade during acute RSV infection altered CD4(+) T cell subset distribution, resulting in a significant increase in IL-17A-producing CD4(+) T cells and a concomitant decrease in Foxp3(+) regulatory T cells. These results demonstrate that IL-10 plays a critical role in modulating the adaptive immune response to RSV by limiting T-cell-mediated pulmonary inflammation and injury. 相似文献
5.
6.
CD4+CD25+ regulatory T cells restrain pathogenic responses during Leishmania amazonensis infection 总被引:1,自引:0,他引:1
Ji J Masterson J Sun J Soong L 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(11):7147-7153
7.
8.
9.
Jackman RP Balamuth F Bottomly K 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(9):5543-5551
Primary murine Th1 and Th2 cells differ in the organization of the immunological synapse, with Th1 cells, but not Th2 cells, clustering signaling molecules at the T cell/B cell synapse site. We sought to determine whether differential costimulatory signals could account for the differences observed. We found that Th2 cells express higher levels of CTLA-4 than Th1 cells, and demonstrated that Th2 cells lacking CTLA-4 are now able to cluster the TCR with the same frequency as Th1 cells. Furthermore, reconstitution of CTLA-4 into CTLA-4-deficient Th2 cells, or into Th1 cells, inhibits the clustering of the TCR. We have also shown that Th2 cells, but not Th1 cells, show variations in the organization of the immunological synapse depending on levels of expression of CD80/CD86 on the APC. These studies demonstrate a unique role for CTLA-4 as a critical regulator of Th2 cells and the immunological synapse. 相似文献
10.
Liu CY Battaglia M Lee SH Sun QH Aster RH Visentin GP 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(5):2680-2686
Active suppression mediated by CD4(+)CD25(+) T regulatory (Tr) cells plays an important role in the down-regulation of T cell responses to both foreign and self-Ags. Platelet factor 4 (PF4), a platelet-derived CXC chemokine, has been shown to strongly inhibit T cell proliferation as well as IFN-gamma and IL-2 release by isolated T cells. In this report we show that human PF4 stimulates proliferation of the naturally anergic human CD4(+)CD25(+) Tr cells while inhibiting proliferation of CD4(+)CD25(-) T cells. In coculture experiments we found that CD4(+)CD25(+) Tr cells exposed to PF4 lose the ability to inhibit the proliferative response of CD4(+)CD25(-) T cells. Our findings suggest that human PF4, by inducing Tr cell proliferation while impairing Tr cell function, may play a previously unrecognized role in the regulation of human immune responses. Because platelets are the sole source of PF4 in the circulation, these findings may be relevant to the pathogenesis of certain immune-mediated disorders associated with platelet activation, such as heparin-induced thrombocytopenia and autoimmune thrombocytopenic purpura. 相似文献
11.
Loss of CD127 expression defines an expansion of effector CD8+ T cells in HIV-infected individuals 总被引:15,自引:0,他引:15
Paiardini M Cervasi B Albrecht H Muthukumar A Dunham R Gordon S Radziewicz H Piedimonte G Magnani M Montroni M Kaech SM Weintrob A Altman JD Sodora DL Feinberg MB Silvestri G 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(5):2900-2909
The immunodeficiency that follows HIV infection is related to the virus-mediated killing of infected CD4(+) T cells, the chronic activation of the immune system, and the impairment of T cell production. In this study we show that in HIV-infected individuals the loss of IL-7R (CD127) expression defines the expansion of a subset of CD8(+) T cells, specific for HIV as well as other Ags, that show phenotypic (i.e., loss of CCR7 and CD62 ligand expression with enrichment in activated and/or proliferating cells) as well as functional (i.e., production of IFN-gamma, but not IL-2, decreased ex vivo proliferative potential and increased susceptibility to apoptosis) features of effector T cells. Importantly, in HIV-infected individuals the levels of CD8(+)CD127(-) T cells are directly correlated with the main markers of disease progression (i.e., plasma viremia and CD4(+) T cell depletion) as well as with the indices of overall T cell activation. In all, these results identify the expansion of CD8(+)CD127(-) effector-like T cells as a novel feature of the HIV-associated immune perturbation. Further studies are thus warranted to determine whether measurements of CD127 expression on CD8(+) T cells may be useful in the clinical management of HIV-infected individuals. 相似文献
12.
Kursar M Bonhagen K Köhler A Kamradt T Kaufmann SH Mittrücker HW 《Journal of immunology (Baltimore, Md. : 1950)》2002,168(12):6382-6387
The immune response against the intracellular bacterium Listeria monocytogenes involves both CD4(+) and CD8(+) T cells. We used the MHC class II-presented peptide listeriolysin(189-201) to characterize the organ-specific CD4(+) T cell response during infection. Systemic listeriosis resulted in a strong peptide-specific CD4(+) T cell response with frequencies of 1/100 and 1/30 CD4(+) splenocytes at the peak of primary and secondary response, respectively. This response was not restricted to lymphoid organs, because we detected specific CD4(+) T cells in all tissues analyzed. However, the tissue distribution of the T cell response was dependent on the route of infection. After i.v. infection, the strongest CD4(+) T cell response and the highest levels of memory cells were observed in spleen and liver, the major sites of L. monocytogenes replication. After oral infection, we detected a strong response in the liver, the lamina propria, and the intestinal epithelium. These tissues also harbored the highest frequencies of listeriolysin(189-201)-specific CD4(+) memory T cells 5-8 wk post oral infection. Our results show that kinetics and magnitude of the CD4(+) T cell response and the accumulation of CD4(+) memory T cells depend on the route of infection and are regulated in a tissue-specific way. 相似文献
13.
Infections that induce autoimmune diabetes in BBDR rats modulate CD4+CD25+ T cell populations 总被引:1,自引:0,他引:1
Zipris D Hillebrands JL Welsh RM Rozing J Xie JX Mordes JP Greiner DL Rossini AA 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(7):3592-3602
Viruses are believed to contribute to the pathogenesis of autoimmune type 1A diabetes in humans. This pathogenic process can be modeled in the BBDR rat, which develops pancreatic insulitis and type 1A-like diabetes after infection with Kilham's rat virus (RV). The mechanism is unknown, but does not involve infection of the pancreatic islets. We first documented that RV infection of BBDR rats induces diabetes, whereas infection with its close homologue H-1 does not. Both viruses induced similar humoral and cellular immune responses in the host, but only RV also caused a decrease in splenic CD4(+)CD25(+) T cells in both BBDR rats and normal WF rats. Surprisingly, RV infection increased CD4(+)CD25(+) T cells in pancreatic lymph nodes of BBDR but not WF rats. This increase appeared to be due to the accumulation of nonproliferating CD4(+)CD25(+) T cells. The results imply that the reduction in splenic CD4(+)CD25(+) cells observed in RV-infected animals is virus specific, whereas the increase in pancreatic lymph node CD4(+)CD25(+) cells is both virus and rat strain specific. The data suggest that RV but not H-1 infection alters T cell regulation in BBDR rats and permits the expression of autoimmune diabetes. More generally, the results suggest a mechanism that could link an underlying genetic predisposition to environmental perturbation and transform a "regulated predisposition" into autoimmune diabetes, namely, failure to maintain regulatory CD4(+)CD25(+) T cell function. 相似文献
14.
Fukazawa Y Miyake A Ibuki K Inaba K Saito N Motohara M Horiuchi R Himeno A Matsuda K Matsuyama M Takahashi H Hayami M Igarashi T Miura T 《Journal of virology》2008,82(12):6039-6044
To analyze the relationship between acute virus-induced injury and the subsequent disease phenotype, we compared the virus replication and CD4(+) T-cell profiles for monkeys infected with isogenic highly pathogenic (KS661) and moderately pathogenic (#64) simian-human immunodeficiency viruses (SHIVs). Intrarectal infusion of SHIV-KS661 resulted in rapid, systemic, and massive virus replication, while SHIV-#64 replicated more slowly and reached lower titers. Whereas KS661 systemically depleted CD4(+) T cells, #64 caused significant CD4(+) T-cell depletion only in the small intestine. We conclude that SHIV, regardless of pathogenicity, can cause injury to the small intestine and leads to CD4(+) T-cell depletion in infected animals during acute infection. 相似文献
15.
Central memory CD4+ T cell responses in chronic HIV infection are not restored by antiretroviral therapy 总被引:1,自引:0,他引:1
Elrefaei M McElroy MD Preas CP Hoh R Deeks S Martin J Cao H 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(3):2184-2189
A strong CD4(+) T cell response has been correlated with better control of HIV infection. However, the effect of HIV on the maintenance of Ag-specific memory CD4(+) T cells is not fully understood. We characterized the function and phenotype of memory CD4(+) T cells generated by mumps and influenza A or B viruses in HIV-infected individuals receiving highly active antiretroviral therapy (n = 21), HIV-infected long-term nonprogressors (n = 10), and HIV-seronegative volunteers (n = 10). We observed significantly decreased proliferation of the Ag-specific central memory CD4(+) T cell population (CD28(+)/CCR7(+)/CD45RA(-)) in the antiretroviral treated HIV-infected individuals compared with the seronegative controls. Restored CD4(+) T cell count and decreased HIV viral load while on highly active antiretroviral therapy did not result in increased proliferation, whereas nadir CD4(+) T cell count predicted the presence of Ag-specific proliferation. Our results indicate that HIV infection leads to impaired maintenance of virus-induced or vaccine-generated central memory CD4(+) T cells that is not restored by HAART. 相似文献
16.
17.
Hayashi Y Tsukumo S Shiota H Kishihara K Yasutomo K 《Journal of immunology (Baltimore, Md. : 1950)》2004,172(9):5240-5248
T cell immune responses are regulated by the interplay between effector and suppressor T cells. Immunization with Ag leads to the selective expansion and survival of effector CD4(+) T cells with high affinity TCR against the Ag and MHC. However, it is not known if CD4(+)CD25(+) regulatory T cells (T(reg)) recognize the same Ag as effector T cells or whether Ag-specific TCR repertoire modification occurs in T(reg). In this study, we demonstrate that after a primary Ag challenge, T(reg) proliferate and TCR repertoire modification is observed although both of these responses were lower than those in conventional T cells. The repertoire modification of Ag-specific T(reg) after primary Ag challenge augmented the total suppressive function of T(reg) against TCR repertoire modification but not against the proliferation of memory CD4(+) T cells. These results reveal that T cell repertoire modification against a non-self Ag occurs in T(reg), which would be crucial for limiting excess primary and memory CD4(+) T cell responses. In addition, these studies provide evidence that manipulation of Ag-specific T(reg) is an ideal strategy for the clinical use of T(reg). 相似文献
18.
Chicken CD4(+)CD25(+) cells were characterized for mammalian regulatory T cells' suppressive and cytokine production properties. Anti-chicken CD25 mAb was produced in mice and conjugated with a fluorescent tag. The specificity of the Ab against chicken CD25 was confirmed by evaluating Con A-induced CD25 upregulation in thymocytes and by quantifying the CD25 mRNA content of positive and negative cells identified by anti-chicken CD25 Ab. The percentage of CD4(+)CD25(+) cells, expressed as a percentage of CD4(+) cells, in thymus and blood was ~3-7%, in spleen was 10%, and in cecal tonsil, lung, and bone marrow was ~15%. Bursa had no detectable CD4(+)CD25(+) cells. CD25(+) cells were mostly CD4(+) in the thymus, whereas in every other organ studied, CD25(+) cells were distributed between CD4(+) and CD4(-) cells. Chicken thymic CD4(+)CD25(+) cells did not proliferate in vitro in the absence of recombinant chicken IL-2 (rCIL-2). In the presence of rCIL-2, PMA plus ionomycin or Con A stimulated CD4(+)CD25(+) cell proliferation, whereas anti-CD3 plus CD28 did not stimulate CD4(+)CD25(+) cell proliferation. Naive CD4(+)CD25(+) cells had 29-fold more IL-10 mRNA and 15-fold more TGF-β mRNA than the naive CD4(+)CD25(-) cells. Naive CD4(+)CD25(+) had no detectable IL-2 mRNA. Both naive and PMA plus ionomycin-stimulated thymic CD4(+)CD25(+) cells suppressed naive T cell proliferation. The suppressive properties were partially contact dependent. Supplementing CD4(+)CD25(+) cell coculture with rCIL-2 reversed the suppressive properties of CD4(+)CD25(+) cells. Chicken CD4(+)CD25(+) cells have suppressive properties similar to that of mammalian regulatory T cells. 相似文献
19.
Kemball CC Pack CD Guay HM Li ZN Steinhauer DA Szomolanyi-Tsuda E Lukacher AE 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(2):1113-1121
Although many studies have investigated the requirement for CD4(+) T cell help for CD8(+) T cell responses to acute viral infections that are fully resolved, less is known about the role of CD4(+) T cells in maintaining ongoing CD8(+) T cell responses to persistently infecting viruses. Using mouse polyoma virus (PyV), we asked whether CD4(+) T cell help is required to maintain antiviral CD8(+) T cell and humoral responses during acute and persistent phases of infection. Though fully intact during acute infection, the PyV-specific CD8(+) T cell response declined numerically during persistent infection in MHC class II-deficient mice, leaving a small antiviral CD8(+) T cell population that was maintained long term. These unhelped PyV-specific CD8(+) T cells were functionally unimpaired; they retained the potential for robust expansion and cytokine production in response to Ag rechallenge. In addition, although a strong antiviral IgG response was initially elicited by MHC class II-deficient mice, these Ab titers fell, and long-lived PyV-specific Ab-secreting cells were not detected in the bone marrow. Finally, using a minimally myeloablative mixed bone marrow chimerism approach, we demonstrate that recruitment and/or maintenance of new virus-specific CD8(+) T cells during persistent infection is impaired in the absence of MHC class II-restricted T cells. In summary, these studies show that CD4(+) T cells differentially affect CD8(+) T cell responses over the course of a persistent virus infection. 相似文献
20.
CD4+CD25+调节性T细胞 总被引:13,自引:0,他引:13
调节性T细胞(regulatory T cells,Treg)是机体维持自身耐受的重要组成部分。CD4^ CD25^ Treg细胞来源于胸腺,其主要功能是抑制自身反应性T细胞,并且其作用是通过直接的Treg-T效应细胞之间的相互接触方式来实现的。CD4^ CD25^ Treg细胞可分泌多种抑制性细胞因子,但与其抑制功能关系并不明确,目前有证据表明GITR和Foxp3与CD4^ CD25^ Treg细胞的抑制功能有关,并且Foxp3已作为CD4^ CD25^ Treg细胞的特异性标志。通过IL-10、TGF-β等抑制性细胞因子、imDC以及转基因技术可以产生具有免疫抑制功能的调节性T细胞。调节性T细胞在免疫相关性疾病、肿瘤免疫和抗感染免疫等方面具有重要意义。 相似文献