首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of extracellular matrix conditions and plating density on cell cytoarchitecture and the constitutive and chemically induced expression of cytochrome P450 3A4 (CYP3A4) was examined in primary cultures of human hepatocytes. Constitutive and drug-induced microsomal CYP3A4 expression occurred equally well in human hepatocyte cultures maintained on either a complex or simple substratum (Matrigel vs collagen, type I), or in a sandwich configuration (i.e., between two layers of extracellular matrix), despite the markedly different morphological properties exhibited by each condition. However, a density-dependent decrease in both the constitutive and induced levels of CYP3A4 was observed in hepatocytes maintained on a simple collagen substratum as plating density was reduced from 100% to 25%. Marked alterations in cell shape and cytoarchitecture were noted concomitant with decreases in the expression and localization of intercellular gap junctions and E-cadherin-mediated cell adhesions. In addition, the intracellular distribution of microtubules and microfilaments was altered substantially and the expression of immunoreactive actin and beta-tubulin increased as cell density was decreased. These effects were reversed to some extent by overlaying monolayers with extracellular matrix or by co-culturing with another cell type. Efforts to maintain normal cell shape and cytoskeletal distribution in hepatocytes at low cell density with a Matrigel substratum failed to restore normal basal levels of CYP3A4 expression or responsiveness to rifampicin (RIF). Likewise, E-cadherin and Cx-32 expression was again reduced, even though the distribution and expression of cytoskeletal elements returned to normal levels. These results suggest that cell-cell contacts, but not the extracellular matrix configuration or composition, play a critical role in determining normal responsiveness to chemical modulators in human hepatocytes.  相似文献   

2.
Although microfluidics provides exquisite control of the cellular microenvironment, culturing cells within microfluidic devices can be challenging. 3D culture of cells in collagen type I gels helps to stabilize cell morphology and function, which is necessary for creating microfluidic tissue models in microdevices. Translating traditional 3D culture techniques for tissue culture plates to microfluidic devices is often difficult because of the limited channel dimensions. In this method, we describe a technique for modifying native type I collagen to generate polycationic and polyanionic collagen solutions that can be used with layer-by-layer deposition to create ultrathin collagen assemblies on top of cells cultured in microfluidic devices. These thin collagen layers stabilize cell morphology and function, as shown using primary hepatocytes as an example cell, allowing for the long term culture of microtissues in microfluidic devices.  相似文献   

3.
Cultures of primary hepatocytes from various species, including human, are used in several applications during pre-clinical drug development. Their use is however limited by cell survival and conservation of liver-specific functions in vitro. The differentiation status of hepatocytes in culture strongly depends on medium formulation and the extracellular matrix environment. We incubated primary rat hepatocytes for 10 days on collagen monolayer and in collagen sandwich cultures with or without serum. Restoration of polygonal cell shape and formation of functional bile canaliculi-like structures was stable only in serum-free sandwich cultures. Variations in general cell viability, as judged by the cellular ATP content, LDH release or apoptosis, were less pronounced between alternative cultures. The intracellular glutathione content was preserved close to in vivo levels especially in serum-free sandwich cultures. Basal activities of cytochrome P450 enzymes (P450) varied strongly between cultures. There was a minor effect on CYP1A but CYP2B activity was only detectable in the serum-free sandwich culture after 3 days and beyond. CYP2C activity was slightly elevated in both sandwich cultures, whereas CYP3A showed increased levels in both serum-free cultures. Inducibility of these P450s was fully maintained over time in serum-free collagen sandwich only. Gene expression was largely constant over time in serum-free sandwich cultures that was closest to liver. This liver-like property was supported by protein profiling results. Taken together, the serum-free collagen sandwich culture of primary rat hepatocytes maintained liver-like features over 10 days and is therefore a suitable model for long-term toxicity and drug-drug interaction studies.  相似文献   

4.
5.
The objective of this study was to examine the importance of cellular aggregation for the maintenance of liver-specific functions in hepatocytes. We used two culture matrix systems (collagen sandwich and Matrigel) to examine the responsiveness of albumin secretory function in cultured rat hepatocytes under various seeding conditions. With high cell seeding, both culture systems elicited comparable levels of elevated function. Under conditions of sparse seeding, however, their responses were quite distinct: collagen sandwiched cells exhibited a significant deterioration in secretion, while Matrigel-cultured cells retained their basal levels of function. This indicates that a critical degree of cell-cell interactions is essential for promoting function in the collagen sandwich, and in the Matrigel-cultured cells functions may be preserved by constitutive matrix-related phenomena, even in the absence of aggregation. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 706-711, 1997.  相似文献   

6.
Albumin secretion, expression of cytochrome P450 dependent mono-oxygenases (CYPs) and their inducibility by well-known inducers were evaluated during 1 week in collagen type I gel sandwich and immobilisation cultures of adult primary rat hepatocytes. Albumin secretion increased during culture time and, following an initial decrease, CYP biotransformation activities remained stable for at least 7 days. Better preservation results were observed in the collagen gel sandwich culture than in the immobilisation model. The inducibility of CYPs by beta-naphthoflavone (beta-NF), 3- methylcholanthrene (3-MC), phenobarbital (PB) and dexamethasone (DEX) was studied in both collagen gel hepatocyte cultures. Exposure of the cells to either 5microM 3-MC or 25 microM beta-NF, added to the culture medium, resulted in strong increases of CYP1A1/2 activity in both culture models. Treatment with PB (3.2 mM) resulted in an increase in the CYP2B activity and a higher hydroxylation of testosterone in the 16alpha-position (CYP2B1/2 and CYP2C11), the 7alpha-position (CYP2A1/2), and the 6beta-position (CYP3A1). DEX (10 microM) markedly increased testosterone 6beta- and 7alpha-hydroxylation. Expression and induction experiments of CYP proteins exposed to these molecules confirmed the results of the CYP activity measurements. The patterns of CYP induction in collagen gel cultures of rat hepatocytes were similar to those observed in vivo. Consequently, collagen gel cultures and, more specifically, collagen gel sandwich cultures seem to be suitable as in vitro models for evaluating xenobiotics as potential inducers of CYP-enzymes.  相似文献   

7.
The elucidation of the effect of extracellular matrices on hepatocellular metabolism is critical to understand the mechanism of functional upregulation. We have developed a system using natural extracellular matrices [Adipogel] for enhanced albumin synthesis of rat hepatocyte cultures for a period of 10 days as compared to collagen sandwich cultures. Primary rat hepatocytes isolated from livers of female Lewis rats recover within 4 days of culture from isolation induced injury while function is stabilized at 7 days post-isolation. Thus, the culture period can be classified into three distinct stages viz. recovery stage [day 0-4], pre-stable stage [day 5-7] and the stable stage [day 8-10]. A Metabolic Flux Analysis of primary rat hepatocytes cultured in Adipogel was performed to identify the key metabolic pathways modulated as compared to collagen sandwich cultures. In the recovery stage [day 4], the collagen-soluble Adipogel cultures shows an increase in TriCarboxylic Acid [TCA] cycle fluxes; in the pre-stable stage [day 7], there is an increase in PPP and TCA cycle fluxes while in the stable stage [day 10], there is a significant increase in TCA cycle, urea cycle fluxes and amino acid uptake rates concomitant with increased albumin synthesis rate as compared to collagen sandwich cultures throughout the culture period. Metabolic analysis of the collagen-soluble Adipogel condition reveals significantly higher transamination reaction fluxes, amino acid uptake and albumin synthesis rates for the stable vs. recovery stages of culture. The identification of metabolic pathways modulated for hepatocyte cultures in presence of Adipogel will be a useful step to develop an optimization algorithm to further improve hepatocyte function for Bioartificial Liver Devices. The development of this framework for upregulating hepatocyte function in Bioartificial Liver Devices will facilitate the utilization of an integrated experimental and computational approach for broader applications of Adipogel in tissue e engineering and regenerative medicine.  相似文献   

8.
Summary To develop a strategy for extended primary culture of human hepatocytes, we placed human hepatocytes between two layers of collagen gel, called a “collagen gel sandwich.” Maintenance of hepatocellular functions in this system was compared with that of identical hepatocyte preparations cultured on dry-collagen coated dishes or co-cultured with rat liver epithelial cells. Human hepatocytes in a collagen gel sandwich (five separate cultures) survived for more than 4 wk, with the longest period of culture being 78 d. They maintained polygonal morphology with bile canaliculuslike structures and high levels of albumin secretion throughout the period of culture. In contrast, hepatocytes on dry-collagen became feature-less, and albumin secretion could not be detected after 14 d of culture. This loss of albumin secretion was partially recovered by overlaying one layer of collagen gel. Ethoxyresorufin O-deethylase activity, associated with cytochrome P450 1A2, was detected basally up to 29 d in collagen gel sandwich culture. These activities were induced four- to eightfold after induction with dibenz(a,h)anthracene. Cocultures also maintained basal activity up to 29 d. However, their inducibility was lower than that of hepatocytes in collagen gel sandwich. No ethoxyresorufin O-deethylase activity was detected in hepatocytes cultured on dry-collagen at 7 d. Thus, the collagen gel sandwich system preserves differentiated morphology and functions of human hepatocytes in primary culture for a prolonged period of time. This system is a promising model for studying human hepatocellular function, including protein synthesis and drug metabolism in vitro.  相似文献   

9.
The cytoskeleton is important in the maintenance of cellular morphology and differentiated function in a number of cell types, including hepatocytes. In this study, adult rat hepatocytes sandwiched between two layers of collagen gel were compared to cells cultured on a single collagen gel for differences in the organization and expression of the cytoskeletal proteins actin and tubulin. Hepatocytes cultured between two layers of hydrated rat tail tendon collagen (sandwich gel) morphologically resembled cells in intact liver for several weeks. Actin filaments (F-actin) in these hepatocytes were concentrated under the plasma membrane in regions of cell-cell contact. In contrast, hepatocytes cultured on a single collagen gel were flattened and motile and had F-actin containing stress fibers. This was accompanied by a severalfold increase in actin mRNA. Microtubules formed an interwoven network in hepatocytes cultured in a sandwich gel, but in single gel cultures they formed long parallel arrays extending out to the cell periphery. Tubulin mRNA was severalfold greater in hepatocytes cultured on a single gel. Fibronectin and laminin staining were greater in single gel cultures, and these proteins were concentrated in fibrils radiating from the cell periphery. Overlaying a second collagen gel onto hepatocytes that had been cultured on a single gel (double gel rescue) reversed cell spreading and reduced stress fibers. Double gel rescue also resulted in a decrease in actin and tubulin mRNA to levels present in sandwich gel cultures and freshly isolated hepatocytes. These results show that the configuration of the external matrix has a dynamic effect on cytoskeletal proteins in cultured rat hepatocytes.  相似文献   

10.
The potential use of porcine hepatocytes in a bioartificial liver device requires large quantities of viable and highly active cells. To facilitate the scaling up of the system, liver specific activities of hepatocytes should be maximized. One way of enhancing the specific activities is to cultivate hepatocytes as multicellular spheroids. Freshly isolated porcine hepatocytes form spheroids when cultivated in suspended cultures. These spheroids exhibit higher activities for a number of liver specific functions compared to hepatocytes cultivated as monolayers. However, these activities decreased in a few days in culture. Entrappment of spheroids in collagen gel sustained their metabolic activities at a stable level over 21 days. Production of albumin and urea by spheroid hepatocytes entrapped in collagen gels were 2 to 3 times higher than those by freshly isolated single cells. P-450 activity was demonstrated by metabolism of lidocaine to its main metabolite, monoethylglycinexylidide. Phase II drug metabolism was demonstrated by glucuronidation of 4-methylumbelliferone. This work shows that porcine hepatocyte spheroids entrapped in collagen maintain differentiated functions for an extended time period. Such hepatocyte spheroid entrappment system may facilitate the development of a bioartificial liver support device.  相似文献   

11.
The differentiated hepatocyte phenotype remains difficult to maintain in culture. The duration over which phenotypically stable hepatocytes can be cultured ranges from a couple of days to a few weeks. Shortcomings in medium formulation may be a factor in this lack of success. We have investigated effects of medium formulation on primary porcine and human hepatocyte cultures. We tested seven culture medium compositions (DMEM, ExCell 400, HepatoZYME-SFM, L-15 Leibovitz, SF-3, Waymouth, and Williams' E) and the effects of serum, fibronectin and biomatrix in a sandwich culture configuration. Albumin, urea, cholesterol, GOT, GPT, LDH and triglyceride concentrations were measured over 14 days. For both human and porcine cultures, the best results were obtained with SF-3 medium. Cells cultivated with Williams' E medium and FCS had good morphology and synthetic function during the first days of culture. However, continued addition of serum, was associated with a subsequent loss of differentiated phenotype. Addition of fibronectin was associated with improved function in cultures maintained in SF-3 medium whilst biomatrix had no effect. In contrast, addition of fibronectin did not influence cultures maintained in Williams' E medium, but cultures with biomatrix were associated with improved function at longer time points.  相似文献   

12.
Dedifferentiation of primary hepatocytes in vitro makes their application in long‐term studies difficult. Embedding hepatocytes in a sandwich of extracellular matrix is reported to delay the dedifferentiation process to some extent. In this study, we compared the intracellular proteome of primary mouse hepatocytes (PMH) in conventional monolayer cultures (ML) to collagen sandwich culture (SW) after 1 day and 5 days of cultivation. Quantitative proteome analysis of PMH showed no differences between collagen SW and ML cultures after 1 day. Glycolysis and gluconeogenesis were strongly affected by long‐term cultivation in both ML and SW cultures. Interestingly, culture conditions had no effect on cellular lipid metabolism. After 5 days, PMH in collagen SW and ML cultures exhibit characteristic indications of oxidative stress. However, in the SW culture the defense system against oxidative stress is significantly up‐regulated to deal with this, whereas in the ML culture a down‐regulation of these important enzymes takes place. Regarding the multiple effects of ROS and oxidative stress in cells, we conclude that the down‐regulation of these enzymes seem to play a role in the loss of hepatic function observed in the ML cultivation. In addition, enzymes of the urea cycle were clearly down‐regulated in ML culture. Proteomics confirms lack in oxidative stress defense mechanisms as the major characteristic of hepatocytes in monolayer cultures compared to sandwich cultures. J. Cell. Biochem. 119: 447–454, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

13.
L-Proline supplementation of the medium for collagen gel cultures of hepatocytes has been shown to improve albumin secretion. A study was made as to whether L-proline is also essential for the maintenance of xenobiotic biotransformation capacities in collagen gel sandwich and immobilisation cultures of rat and human hepatocytes. Key phase I (cytochrome P450-dependent monooxygenase [CYP)] and microsomal epoxide hydrase [mEH]) and phase II (glutathione S-transferase [GST]) biotransformation enzyme activities and the secretion of albumin in the culture medium were assessed in the absence and presence of L-proline. CYP and mEH activities were not affected by the addition of L-proline, whereas phase II alpha-Class GST activity of rat hepatocytes in collagen cultures was decreased. Species differences were demonstrated, as human hepatocytes showed a better maintenance of GST activities than their rat counterparts in the presence of L-proline. Albumin secretion, often considered to be a marker for differentiated cell function, does not parallel the biotransformation capacities of the hepatocytes in culture. Additional results demonstrated an L-proline-mediated enhancement of the proliferation rate of contaminating stellate cells in conventional monolayer culture. Transdifferentiation of stellate cells to proliferating myofibroblasts, along with an increased albumin secretion and collagen synthesis, are characteristic of fibrotic liver. Since the last two phenomena have been observed in L-proline-supplemented collagen gel cultures, it can be concluded that when stable collagen gel cultures of rat hepatocytes are needed for long-term pharmacotoxicological studies, it is preferable to use an L-proline-free culture medium. Further studies on medium optimisation are required for hepatocytes from species other than rat.  相似文献   

14.
A serum-free culture system for primary hepatocytes which maintains stabel high-level hepatocyte function for prolonged periods in culture has been developed. Isolated rat primary hepatocytes were cultured in serum-free media between two layer of gelled collagen in a sandwich configuration which reinstates the cellular polarity necessary for long-term function in vitro. Thsee serum-free hepatocyte cultures maintained near physiological rates of albumin and transferrin secretion for a minimum of 26 days in culture. L-Proline was shown to be critical for both the approach to steady state and maximal level of protein secretion. Analysis of does-response data gave K(m) values of 2.9 and 1.7 mug/mL for albumin and transferrin secretion, respectively.  相似文献   

15.
For long-term maintenance of functional hepatocytes in primary culture, a new culture system with chemically modified type-I collagen gel was developed. Isolated hepatocytes spread as flat cells and rapidly lost their viability and functions when cultured on native collagen gel. In contrast, they survived for several weeks when cultured on collagen gels that had been modified by treatment with sodium-borohydride (NaBH4) or by digestion with pepsin, which resulted in destruction of crosslinking of collagen fibers and marked decrease in meachanical strength of the gels. These long-lived cells were round and aggregated and maintained high levels of various differentiated liver functions including albumin secretion and activities of tyrosine aminotransferase and P450. Moreover on collagen gels modified by treatment with NaBH4 or pepsin, the cell showed less DNA synthesis in response to mitogenic stimulation than cells cultures on gel containing native collagen. Interestingly, crosslinking of these chemically modified gels with D-ribose resulted in changes in various phenotypes of hepatocytes cultures on them including shape, longevity, and functions expressed when the cells were cultured on native collagen gel, suggesting that the effect of modification of the collagen gel is reversible. Thus the structure of collagen gels, probably due to the degree of crosslinking, seems to affect the morphology, maintenance of differentiated functions, and growth of primary cultured hepatocytes.  相似文献   

16.
Summary The sulfate and glucuronide conjugation of acetaminophen (APAP) by hepatocytes cultured on Matrigel or type 1 collagen was compared to APAP metabolism in vivo. The metabolic fate of low (15 mg/kg), medium (125 mg/kg), and high (300 mg/kg) doses of APAP injected intraperitoneally were determined in male and female rats. Males excreted more APAP as the sulfate conjugate than females, which correlated with the twofold greater APAP sulfotransferase activity in the male vs. females (301±24 vs. 156±18 pmol · mg−1 protein · min−1). Also, as sulfate conjugation became saturated, there was a dose-related shift in APAP metabolism from sulfate to glucuronide conjugation in both sexes. After death, the livers of the same animals were perfused with collagenase and the hepatocytes cultured in modified Waymouth’s medium on either Matrigel or rat-tail collagen, with various doses of APAP (0, 0.125, 0.25, 0.5, and 1.0 mM). Sex differences in APAP sulfation and glucuronidation persisted in culture for up to 4 days, with sulfation predominating in the male similar to in vivo. With increasing APAP concentration (dose), there was a saturation of sulfate conjugation and a shift to glucuronidation as observed in vivo. Sex differences in APAP sulfation and glucuronidation were no longer significant by Day 4 in culture. Sulfation, and to a lesser extent, glucuronidation, were more stable on Matrigel than collagen. We concluded that APAP metabolism of freshly isolated hepatocytes could replicate in vivo sex differences in conjugation, and that Matrigel was superior to collagen as substrate.  相似文献   

17.
Hepatic glucose metabolism is a key player in diseases such as obesity and diabetes as well as in antihyperglycemic drugs screening. Hepatocytes culture in two-dimensional configurations is limited in vitro model for hepatocytes to function properly, while truly practical platforms to perform three-dimensional (3D) culture are unavailable. In this work, we present a practical organoid culture method of hepatocytes for elucidation of glucose metabolism under nominal and stress conditions. Employing this new method of culturing cells within a hollow fiber reactor, hepatocytes were observed to self-assemble into 3D spherical organoids with preservation of tight junctions and display increased liver-specific functions. Compared to both monolayer culture and sandwich culture, the hepatocyte organoids displayed higher intracellular glycogen content, glucose consumption, and gluconeogenesis and approached the in vivo values, as also confirmed by gene expression of key enzymes. Moreover, hepatocyte organoids demonstrated more realistic sensitivity to hormonal challenges with insulin, glucagon, and dexamethasone. Finally, the exposure to high glucose demonstrated toxicities including alteration of mitochondrial membrane potential, lipid accumulation, and reactive oxygen species formation, similar to the in vivo responses, which was not captured by monolayer cultures. Collectively, hepatocyte organoids mimicked the in vivo functions better than hepatocyte monolayer and sandwich cultures, suggesting suitability for applications such as antihyperglycemic drugs screening.  相似文献   

18.
Adult rat hepatocytes cultured in a collagen sandwich system maintained normal morphology and a physiological rate of albumin secretion for at least 42 days. Hepatocytes cultured on a single layer of collagen gel essentially ceased albumin secretion within 1 wk but could recover function with the overlay of a second layer of collagen gel. This culture configuration more closely mimics the hepatocytes' in vivo environment and provides a simple method for their long-term maintenance.  相似文献   

19.
Current methods of cryopreservation of hepatocytes in single cell suspensions result in low overall yields of hepatocytes, demonstrating long-term preservation of hepatocellular functions. A novel culture method has recently been developed to culture liver cells in a sandwich configuration of collagen layers in order to stabilize the phenotypic expression of these cells in vitro (J. C. Y. Dunn, M. L. Yarmush, H. G. Koebe, and R. G. Tompkins, FASEB J. 3, 174, 1989). Using this culture system, rat hepatocytes were frozen with 15% (v/v) Me2SO to -70 degrees C, and stored at approximately -100 degrees C. Following rapid thawing, long-term function was assessed by measuring albumin secretion in culture for 7-14 days postfreezing. Comparison was made with cryopreservation of liver cells in single cell suspensions. Cryopreservation of liver cells in suspension resulted in only a 2% yield of cells which could be successfully cultured; albumin secretion rates in these cultured cells over 48 hr were 26-30% of secretion rates for nonfrozen hepatocytes. Freezing cultured liver cells in the sandwich configuration after 3, 7, and 11 days in culture maintained 0, 26, and 19% of the secretion rates of nonfrozen hepatocytes, respectively. Morphology of the cryopreserved cells appeared grossly similar to cells without freezing; however, this morphological result was patchy and represented approximately 30% of the cells in culture. These results represent the first demonstration of any quantitative long-term preservation of hepatocellular function by cryopreservation, suggesting that cultured hepatocytes can survive freezing and maintain function.  相似文献   

20.
A recently developed sandwich culture system, in which hepatocytes are sandwiched between two layers of collagen, has been shown to be capable of maintaining long-term expression of hepatocellular function (J. C. Y. Dunn et al., Biotechnol. Prog. 7, 237-245, 1991). The development of an adequate technique for the cryopreservation of hepatocytes in such a stable culture configuration would ensure a ready supply of hepatocytes for use in bioreactors or bioartificial liver support devices. This report describes the effects of exposing hepatocytes in sandwich culture to different concentrations of the cryoprotectant dimethyl sulfoxide (Me2SO) at 22 degrees C on Day 7 of culture. Cell function, morphology, and cytoskeletal organization were followed for 14 days after exposure. Hepatocellular morphology and albumin secretion remained normal when cultures were exposed for up to 120 min to predicted final Me2SO concentrations up to 1.33 M. Exposure for less than 60 min to equilibrium concentrations of up to 3.33 M Me2SO did not adversely affect cell morphology or albumin secretion rate, but at the highest concentration (3.33 M), increase of the exposure time to 60 or 120 min resulted in dramatic, irreversible cell damage and loss of function. Actin filament organization was shown to be undisturbed when the cells were exposed to 1.33 M Me2SO for 60 min, but was irreversibly disrupted by exposure to 3.33 M for 120 min. Based on these results, a simple and safe procedure is suggested for the addition of Me2SO to hepatocytes in a sandwich culture configuration and its subsequent removal, which will be valuable for studies on hepatocyte cryopreservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号