共查询到20条相似文献,搜索用时 0 毫秒
1.
Purine transport by Malpighian tubules of pteridine-deficient eye color mutants of Drosophila melanogaster 总被引:6,自引:0,他引:6
David T. Sullivan L. Anne Bell Duncan R. Paton Marie C. Sullivan 《Biochemical genetics》1979,17(5-6):565-573
Uptakes of guanine into Malpighian tubules of wild-type Drosophila and the eye color mutants white (w), brown (bw), and pink-peach (p
p) have been compared. Tubules for each of these mutants are unable to concentrate guanine intracellularly. The transport of xanthine and riboflavin is also deficient in w tubules. The transport of guanosine, adenine, hypoxanthine, and guanosine monophosphate is similar in wild-type and white Malpighian tubules. These data and other information about these mutants make it likely that these pteridine-deficient eye color mutants do not produce pigments because of the inability to transport a pteridine precursor. This view supports the hypothesis that mutants which lack both pteridine and ommochromes do so because precursors to both classes of pigments share a common transport system.This work was supported by Grant GM22366 from NIH. 相似文献
2.
Haemolymph calcium homeostasis in insects is achieved through the regulation of calcium excretion by Malpighian tubules in two ways: (1) sequestration of calcium within biomineralized granules and (2) secretion of calcium in soluble form within the primary urine. Using the scanning ion-selective electrode technique (SIET), basolateral Ca2+ transport was measured at the distal, transitional, main and proximal tubular segments of anterior tubules isolated from both 3rd instar larvae and adults of the fruit fly Drosophila melanogaster. Basolateral Ca2+ transport exceeded transepithelial secretion by 800-fold and 11-fold in anterior tubules of larvae and adults, respectively. The magnitude of Ca2+ fluxes across the distal tubule of larvae and adults were larger than fluxes across the downstream segments by 10 and 40 times, respectively, indicating a dominant role for the distal segment in whole animal Ca2+ regulation. Basolateral Ca2+ transport across distal tubules of Drosophila varied throughout the life cycle; Ca2+ was released by distal tubules of larvae, taken up by distal tubules of young adults and was released once again by tubules of adults ⩾168 h post-eclosion. In adults and larvae, SIET measurements revealed sites of both Ca2+ uptake and Ca2+ release across the basolateral surface of the distal segment of the same tubule, indicating that Ca2+ transport is bidirectional. Ca2+ uptake across the distal segment of tubules of young adults and Ca2+ release across the distal segment of tubules of older adults was also suggestive of reversible Ca2+ storage. Our results suggest that the distal tubules of D. melanogaster are dynamic calcium stores which allow efficient haemolymph calcium regulation through active Ca2+ sequestration during periods of high dietary calcium intake and passive Ca2+ release during periods of calcium deficiency. 相似文献
3.
Abstract. A radioisotope tracer technique is used to study mechanisms and regulation of transepithelial transport of the plant allelochemical salicylate by the Malpighian tubules of Drosophila melanogaster . Transepithelial transport of salicylate is nearly abolished in Na+ -free saline, and inhibited by ouabain, low K+ or K+ -free bathing saline. In addition, the carboxylates probenecid, unlabelled salicylate, fluorescein, and p -aminohippuric acid (PAH) significantly inhibit transepithelial transport of salicylate. The sulphonates taurocholate and phenol red also inhibit transepithelial transport of salicylate, whereas amaranth has no effect. Stimulation of fluid secretion by cAMP, cGMP or leucokinin I increases transepithelial transport of salicylate, particularly when the concentration of salicylate in the bathing saline is high. The correlation between the fluid secretion rate and transepithelial transport of salicylate shows that 64% of the changes in salicylate transport can be explained on the basis of changes in fluid secretion rate. The results show that naturally-occurring plant secondary metabolite salicylate is transported into the lumen of the Mapighian tubules of D. melanogaster by a mechanism similar to that previously described for the prototypical organic anions PAH and fluorescein. In addition, the transepithelial transport of salicylate increases in response to increases in fluid secretion rate. 相似文献
4.
The effects of stimulants of fluid secretion on net transepithelial transport of the MRP2 substrate Texas Red and the p-glycoprotein substrate daunorubicin were examined in Malpighian tubules of Drosophila melanogaster. Fluid secretion rates were determined using the Ramsay assay and secreted fluid concentrations of Texas Red and daunorubicin were determined using a microfluorometric technique. Nanoliter droplets of secreted fluid were collected in optically flat glass capillaries and dye concentration was determined from fluorescence intensity measured by confocal laser scanning microscopy. Net transepithelial flux of each compound was then calculated as the product of its concentration in the secreted fluid and the fluid secretion rate. Net transepithelial flux of Texas Red increased when fluid secretion was stimulated by tyramine, cyclic AMP or hypoosmotic saline. Net flux decreased when fluid secretion rate of cAMP-stimulated tubules was reduced by elevating saline osmolality with sucrose. Net transepithelial flux of daunorubicin increased when fluid secretion was stimulated by cAMP. Significant increases in dye flux were seen only when the dyes were present at concentrations close to or greater than the concentration required for half maximal transport. Regression analyses showed that 57- 88% of the change in dye flux was attributable to the change in fluid secretion rate when tubules were stimulated with cAMP, cGMP, or tyramine. The results do not suggest that the effects of tyramine and cAMP are mediated through changes in transepithelial potential, nor do they indicate the direct effects of the stimulants on MRP2-like or p-glycoprotein-like transporters (e.g., via protein kinases). Instead, the results suggest that increases in fluid secretion rate minimize diffusive backflux of these dyes and, thus, facilitate higher rates of net transepithelial transport indirectly. 相似文献
5.
This study showed that four factors which stimulate transepithelial fluid secretion and inorganic ion transport across the main segment of the Malpighian tubules of Drosophila melanogaster also stimulate transepithelial secretion of the prototypical organic cation tetraethylammonium (TEA). TEA fluxes across the Malpighian tubules and gut were measured using a TEA-selective self-referencing (TEA-SeR) microelectrode. TEA flux across isolated Malpighian tubules was also measured using a TEA-selective microelectrode positioned in droplets of fluid secreted by tubules set up in a modified Ramsay assay. TEA flux was stimulated by the intracellular second messengers cAMP and cGMP, which increase the lumen-positive transepithelial potential (TEP), and also by tyramine and leucokinin-I (LK-I), which decrease TEP. The largest increase was measured in response to 1 micromol l-1 LK-I which increased transepithelial TEA flux by 72%. TEA flux in the lower tubule was stimulated slightly (13%) by 1 micromol l-1 tyramine but not by any of the other factors. TEA flux across the midgut was unaffected by cAMP, cGMP or tyramine. This is the first study to demonstrate the effects of insect diuretic factors and second messengers on excretion of organic cations. 相似文献
6.
Mechanisms of calcium sequestration by isolated Malpighian tubules of the house cricket Acheta domesticus 下载免费PDF全文
Hemolymph calcium homeostasis in insects is achieved by the Malpighian tubules, primarily by sequestering excess Ca2+ within internal calcium stores (Ca‐rich granules) most often located within type I (principal) tubule cells. Using both the scanning ion‐selective electrode technique and the Ramsay secretion assay this study provides the first measurements of basolateral and transepithelial Ca2+ fluxes across the Malpighian tubules of an Orthopteran insect, the house cricket Acheta domesticus. Ca2+ transport was specific to midtubule segments, where 97% of the Ca2+ entering the tubule is sequestered within intracellular calcium stores and the remaining 3% is secreted into the lumen. Antagonists of voltage‐gated (L‐type) calcium channels decreased Ca2+ influx ≥fivefold in adenosine 3′,5′‐cyclic monophosphate (cAMP)‐stimulated tubules, suggesting basolateral Ca2+ influx is facilitated by voltage‐gated Ca2+ channels. Increasing fluid secretion through manipulation of intracellular levels of cAMP or Ca2+ had opposite effects on tubule Ca2+ transport. The adenylyl cyclase‐cAMP‐PKA pathway promotes Ca2+ sequestration whereas both 5‐hydroxytryptamine and thapsigargin inhibited sequestration. Our results suggest that the midtubules of Acheta domesticus are dynamic calcium stores, which maintain hemolymph calcium concentration by manipulating rates of Ca2+ sequestration through stimulatory (cAMP) and inhibitory (Ca2+) regulatory pathways. 相似文献
7.
Calcium transport across the basolateral membrane of isolated Malpighian tubules: a survey of several insect orders 下载免费PDF全文
The Malpighian tubules play a major role in haemolymph calcium homeostasis in insects by sequestering excess Ca2+ within the biomineralized granules that often accumulate in the tubule cells and/or lumen. Using the scanning ion‐selective microelectrode technique, measurements of basolateral Ca2+ transport are determined at several sites along the length of the Malpighian tubules isolated from the eight insects representing seven orders: Drosophila melanogaster (Diptera), Aedes aegypti (Diptera), Tenebrio molitor (Coleoptera), Acheta domesticus (Orthoptera), Trichoplusia ni (Lepidoptera), Periplaneta americana (Blattodea), Halyomorpha halys (Hemiptera) and Pogonomyrmex occidentalis (Hymenoptera). Ca2+ transport is specific to tubule segments containing Ca‐rich granules in D. melanogaster and A. aegypti, whereas Ca2+ transport is relatively uniform along the length of whole tubules in the remaining species. Generally, manipulation of second messenger pathways using cAMP and thapsigargin has little effect on rates of basolateral Ca2+ transport, suggesting that previous effects observed across midtubules of A. domesticus are unique to this species. In addition, the present study is the first to provide measurements of basolateral Ca2+ across single principal and secondary tubule cells, where Ca2+ uptake occurs only across principal cells. Estimated times for all tubules to eliminate the entire haemolymph Ca2+ content in each insect range from 6 min (D. melanogaster) to 19 h (H. halys) or more, indicating that rates of Ca2+ uptake by the Malpighian tubules are not always rapid. The results of the present study suggest that the principal cells of the Malpighian tubules contribute to haemolymph calcium homeostasis by sequestering excess Ca2+, often within specific tubule segments. 相似文献
8.
Renee A. Krueger Alberto B. Broce Theodore L. Hopkins Karl J. Kramer 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1988,158(4):413-419
Summary The transport of calcium from mineralized granules stored in the Malpighian tubules to the puparium of the face fly,Musca autumnalis De Geer, was studied. Calcium was transported directly from the tubules to the cuticle via the hemolymph. Little, if any, calcium entered the hindgut or other tissues during or prior to transport. A total of approximately 0.8 mg of calcium per larva was transported, beginning at the wandering stage; peak hemolymph concentrations occurred at anterior retraction. Hemolymph calcium levels subsequently decreased as puparial calcium increased. Puparial mineralization utilized most of the minerals stored during the larval stage, with lesser amounts of minerals being recovered in the adult or excreted. Deposition of mineral salts in the cuticle was accompanied by an increase in cuticular pH from 7.0 to 8.4. The house fly,Musca domestica L., which contains much lower concentrations of minerals in the puparial cuticle, exhibited no increase in cuticular pH during pupariation. Biomineralization of the face fly puparial cuticle appears to occur, in part, as a result of ionic equilibria involving calcium and magnesium phosphates and carbonates, which have relatively low solubility products at alkaline pH.Contribution No. 87-237-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, Kansas. Cooperative investigation between Agricultural Research Service, U.S. Department of Agriculture and the Kansas Agricultural Experiment Station. K.J.K. is a research chemist and adjunct professor at U.S. Grain Marketing Research Laboratory and Kansas State University, respectively. Mention of a proprietary product in this paper does not imply its approval by the USDA to the exclusion of other products that may also be suitable. Reprint requests to A.B. Broce 相似文献
9.
Intracellular vesicular trafficking is one of the important tools in maintaining polarity, adhesion, and shape of epithelial cells. Rab11, a subfamily of the Ypt/Rab gene family of ubiquitously expressed GTPases and a molecular marker of recycling endosomes, transports different components of plasma membrane. Here, we report that Rab11 affects tubulogenesis of Malpighian tubules (MTs). MTs are simple polarized epithelial tubular structures, considered as functional analogue of human kidney. Rab11 has pleiotropic effects on MTs development as down‐regulation of Rab11 in principal cells (PCs) of MTs from embryonic stages of development results in reduced endoreplication, clustering of cells, disorganized cytoskeleton, and disruption of polarity leading to shortening of MTs in third instar larvae. Rab11 is also required for proper localization of different transporters in PCs, essential for physiological activity of MTs. Collectively, our data suggest that Rab11 plays a key role in the process of tubulogenesis of MTs in Drosophila. 相似文献
10.
David T. Sullivan L. Anne Bell Duncan R. Paton Marie C. Sullivan 《Biochemical genetics》1980,18(11-12):1109-1130
Dissected Malpighian tubules from wild type and the eye color mutant white of Drosophila were compared with respect to their abilities to transport tryptophan and kynurenine into tubule cells. It was determined that mutation at white greatly impairs the ability of Malpighian tubule cells to take up tryptophan. Functional studies on the extracellular spaces and ultrastructural observations indicated no differences in these respects between wild type and white tubules. It is consistent with several observations that much of the tryptophan associated with white exists in the intercellular spaces. Furthermore, the uptake of tryptophan by the w + system of wild type tubules is inhibited by the analogue 5-methyl-tryptophan. However, the incorporation of radioactive tryptophan into protein in tubule cells from wild type and white occurs at the same rates and is not affected by 5-methyl-tryptophan. Therefore, it is apparent that Malpighian tubules have a transport system that enables entry of tryptophan into a cellular pool and that this cellular pool is initially independent of the tryptophan pool used for protein synthesis. The mutant white lacks this transport system. From these studies and others it appears that compartmentalization of cellular pools may be brought about via the utilization of specific membrane transport systems. 相似文献
11.
The Malpighian tubules of Musca domestica secrete a fluid with a high concentration of potassium and low concentrations of sodium, calcium, magnesium and chloride compared with the isolating medium.Low secretion rates are produced by low medium potassium concentrations (< 7 mM), with low sodium concentrations (up to 5 mM) increasing secretion; higher potassium concentrations produce higher secretion rates whilst higher sodium concentrations have no further effect. Calcium and magnesium are essential for secretion.The rate of tubule secretion is inversely proportional to the osmotic pressure of the isolating medium and the osmotic pressure of the secreted fluid is slightly hyper-osmotic to the medium over a range of medium osmotic pressures.The metabolic inhibitors cyanide, iodoacetate and 2,4-dinitrophenol inhibit secretion: Cu2+ ions, arsenate and ouabain have no effect whereas ethacrynic acid abolishes secretion. 5-hydroxytryptamine, cycle AMP and theophylline have no effect on secretion. Sodium thiocyanate stimulates fluid secretion and increases the osmotic pressure and the concentration of sodium and chloride, but not potassium, in the secreted fluid. 相似文献
12.
Summary Genetically marked maroon-like (mal) clones were induced by mitotic recombination with X-rays at the blastoderm stage in mal/mal
+ heterozygotes and were analysed in differentiated Malpighian tubules (MT). Marked cells were not confined to single anterior (MA) or posterior (MP) tubules, but were distributed among the four tubules. About 70% of the clones with two or more cells were fragmented, i.e. mal cells were separated by wild-type cells. Since the clones contain, on average, 6 cells and the differentiated MT consist of 484 cells (2 × 136 MA cells, 2 × 106 MP cells), we estimate that there are about 80 cells in the blastoderm anlage which on average pass through two to three mitoses. With increasing radiation doses (254 R, 635 R, 1270 R) a linear increase in clone frequency is observed. The mean sizes and size distributions of clones, however, remain unchanged. Since the increasing radiation dose also results in fewer differentiated Malpighi cells, we assume that regeneration does not occur. Therefore, size distributions of marked clones presumably represent real mitotic patterns in normogenesis. We suggest that essentially three successive mitoses take place, with a decreasing fraction of cells showing mitotic activity. Only a small fraction of cells goes through a fourth or even a fifth mitosis. Marked non-Minute clones induced in Minute heterozygotes are more frequent, but are not larger than non-Minute clones in wild-type background. Therefore, compartment boundaries cannot be recognized by this method. However, frequencies of marked cells found simultaneously in MA and MP pairs or in several single tubules of the same individuals are significantly higher than frequencies of multiple recombination events predicted by the Poisson distribution. From this, we conclude that neither the MA pair nor the MP pair nor single tubules represent compartments of the MT anlage.On the occasion of his 60th birthday, this work is dedicated to Prof. Dr. H.J. Becker, who initiated cell lineage studies in Drosophila 相似文献
13.
Sarah Chahine Michael J. O'Donnell 《Archives of insect biochemistry and physiology》2010,73(3):128-147
The effects of dietary exposure to organic anions on the physiology of isolated Malpighian tubules and on tubule gene expression were examined using larvae of Drosophila melanogaster. Acute (24 h) or chronic (7 d) exposure to type I organic anions (fluorescein or salicylate) was associated with increased fluid secretion rates and increased fluxes of both salicylate and the type II organic anion methotrexate. By contrast, chronic exposure to dietary methotrexate was associated with increased fluid secretion rate and increased flux of methotrexate, but not salicylate. Exposure to methotrexate in the diet resulted in increases in the expression of a multidrug efflux transporter gene (MET; CG30344) in the Malpighian tubules. There were also increases in expression of genes for either a Drosophila multidrug resistance–associated protein (dMRP; CG6214) or an organic anion transporting polypeptide (OATP; CG3380), depending on the concentration of methotrexate in the diet. Exposure to salicylate in the diet was associated with an increase in expression of dMRP and with decreases of MET and OATP. Exposure to dietary salicylate or methotrexate was also associated with different patterns of expression of heat shock protein genes. The results suggest that exposure to specific type I or type II organic anions has multiple effects and results not only in increased organic anion transport but also in increased rates of inorganic ion transport, which drives osmotically‐obliged fluid secretion. Increased fluid secretion may enhance secretion of organic anions by eliminating diffusive backflux from the tubule lumen to the hemolymph. © 2010 Wiley Periodicals, Inc. 相似文献
14.
We examined transepithelial transport of the prototypical type I organic cation (OC) tetraethylammonium (TEA) and the plant alkaloid nicotine by the isolated Malpighian tubules (MTs) of nine insect species from six orders. Isolated tubules were exposed to radiolabelled forms of either TEA or nicotine in the bathing (basal) fluid. Luminal (apical) secreted fluid was collected and TEA or nicotine concentration was determined. Active net transport of nicotine from bath to lumen was observed by the MTs of all the insects studied. TEA was also transported from bath to lumen in MTs of all species except Rhodnius prolixus and Aedes aegypti. MTs of both of these blood feeders did not show active transport of TEA under normal physiological conditions. Transport of TEA but not nicotine increased during the moult in the MTs of Rhodnius, but the concentrations of TEA in the secreted fluid were still consistent with passive accumulation in response to the lumen-negative transepithelial potential. Nicotine transport by Rhodnius MTs was inhibited by the type II OC quinidine, a known p-glycoprotein inhibitor, but not by the type I OCs N-methylnicotinamide or cimetidine. Taken together, the results suggest that active transport of OCs by the MTs is common among species from different orders and that transepithelial TEA and nicotine transport occur through separate pathways. 相似文献
15.
Electron probe X-ray microanalytical studies on the role of carbonic anhydrase in electrolyte transport in the cells of Drosophila Malpighian tubules indicate that carbonic anhydrase delivers protons and bicarbonate ions to ion transport systems in the cell membrane. After injection and after feeding acetazolamide or hydrochlorothiazide, known inhibitors of carbonic anhydrase, the contents of potassium, magnesium and chloride in the apical cytoplasm and in the cytoplasm close to the basal plasma membrane decreased. We explain our measurements by the hypothesis of a basal Mg-H-antiport system in parallel with Cl-HCO(3)-antiport, inhibitable by DIDS. Zinc is supposed to enters cells and intracellular Zn storage vacuoles by a negatively charged Zn-anion-complex in exchange for HCO(3)(-) ions. This antiport is inhibitable by SITS. The content of the Zn storage vacuoles is acid, as shown by red fluorescence after incubation of Malpighian tubules with acridine orange. Red fluorescence is absent after preincubation in a medium containing an inhibitor of carbonic anhydrase. Carbonic anhydrase was demonstrated cytochemically in the Golgi-ER complex, Golgi vesicles and intercellular space. We suppose that carbonic anhydrase is synthesized and stored in the Golgi-ER-complex from where it is released into the tubule lumen. 相似文献
16.
The effects of altered expression of the Keap1/CncC pathway on the secretion of fluid and salicylate by Malpighian tubules of Drosophila melanogaster 下载免费PDF全文
The Keap1‐Nrf2 pathway is a major upstream regulator of xenobiotic detoxification. In Drosophila melanogaster Meigen, targeted expression of Keap1 and CncC (the latter the orthologue of human Nrf2) in the Malpighian (renal) tubules is known to confer resistance to lethal doses of the pesticide malathion, which is metabolized into organic anions. Dietary exposure to organic anions such as salicylate (10 mm ) causes increases in the fluid secretion rate and salicylate flux across Malpighian tubules. In the present study, salicylate‐selective microelectrodes and Ramsay assays are used to determine the role of Keap1/Nrf2 in regulating these responses. Genetic manipulations designed to increase Nrf2 activity (by knockdown of the repressor Keap1 or overexpression of the Nrf2 coactivator MafS) or to decrease Nrf2 activity (by overexpression of Keap1) are also studied. Although the results of the Keap1 manipulations are inconclusive, there is no increase in the fluid secretion rate or salicylate flux in tubules isolated from flies in which MafS expression is increased. 相似文献
17.
18.
G. M. COAST 《Physiological Entomology》1989,14(1):21-30
Abstract. Fluid secretion by single isolated Malpighian tubules of Acheta domesticus (L.) is stimulated by aqueous extracts of nervous and neuroendocrine tissues from the cricket. Diuretic activity, expressed as the increase in rate of secretion per microgram tissue protein (pl/mm/min/ug protein), is highest in the CA and CC.
The response to aqueous CC extracts is dose-dependent. The maximum increase in secretion rate is 300–350 pl/mm/min and the EDmax and ED50 are 0.1–0.2 and 0.02–0.03 gland pairs respectively.
The diuretic activity in the CC is retained after 5min at 95C, and is freely soluble in 80% methanol. Diuretic activity is, however, greatly reduced after prolonged heating or after treatment with either pronase or chymotrypsin. It is conluded that the diuretic factor(s) is a low molecular weight peptide. A loss of activity after incubation with pyroglutamate amino peptidase suggests that some active peptides present are N-terminally blocked.
The diuretic activity of crude aqueous CC extracts is rapidly lost on standing at room temperature. This is partly prevented by precipitation of protein enzymes by either heat treatment or extraction in methanol.
Synthetic vertebrate and insect neuropeptides are generally low in activity increasing fluid secretion by no more than 60pl/mm/min. However, extracts of neuroendocrine tissues from a wide range of insect species are potent stimulants of tubule secretion. Various biogenic amines were tested and have little effect on fluid secretion; thus they cannot contribute greatly to the response of cricket tubules to aqueous tissue extracts. 相似文献
The response to aqueous CC extracts is dose-dependent. The maximum increase in secretion rate is 300–350 pl/mm/min and the ED
The diuretic activity in the CC is retained after 5min at 95C, and is freely soluble in 80% methanol. Diuretic activity is, however, greatly reduced after prolonged heating or after treatment with either pronase or chymotrypsin. It is conluded that the diuretic factor(s) is a low molecular weight peptide. A loss of activity after incubation with pyroglutamate amino peptidase suggests that some active peptides present are N-terminally blocked.
The diuretic activity of crude aqueous CC extracts is rapidly lost on standing at room temperature. This is partly prevented by precipitation of protein enzymes by either heat treatment or extraction in methanol.
Synthetic vertebrate and insect neuropeptides are generally low in activity increasing fluid secretion by no more than 60pl/mm/min. However, extracts of neuroendocrine tissues from a wide range of insect species are potent stimulants of tubule secretion. Various biogenic amines were tested and have little effect on fluid secretion; thus they cannot contribute greatly to the response of cricket tubules to aqueous tissue extracts. 相似文献
19.
In vitro preparations of Locusta Malpighian tubules are able to transport K+ against its concentration gradient. The ‘urine’ is slightly hyper-osmotic with respect to the bathing solution and the rate of secretion is inversely dependent on the osmotic pressure of the latter. The rate of fluid secretion increases with increasing temperature; being maximal at approx 40°C. The ionic composition of the secreted fluid, as indicated by Na+/K+ ratios, is altered by the presence of 1 mM ouabain in the bathing solution. Fluid secretion is inhibited by 1 mM ouabain. In addition, oxygen consumption by the Malpighian tubules is inhibited by either the presence of 1 mM ouabain or the absence of K+ in the bathing solution. The relationship between respiration, active transport and the Na+K+-activated ATPase is discussed. 相似文献
20.
Isolated transverse tubule vesicles free of sarcoplasmic reticulum transport calcium with high affinity in the presence of ATP. The calcium transport by transverse tubules differs from calcium transport by sarcoplasmic reticulum. It is not increased by oxalate or phosphate, it has a different temperature dependence, it is inhibited by sub-micromolar concentrations of orthovanadate, it is stimulated by calmodulin, and is inhibited by quercetin without causing calcium release. The rates of calcium transport by transverse tubules are two orders of magnitude lower than those of sarcoplasmic reticulum, suggesting that the calcium pump protein of transverse tubules is a minor component of the membrane. Addition of calmodulin to transverse tubule vesicles--treated with high salt in the presence of EGTA to remove endogenous calmodulin--caused a marked stimulation of transport rates at low concentrations of calcium, and decreased from 1.0 to 0.3 microM the calcium concentration at which half-maximal rates of transport were obtained. A role for the transverse tubule calcium pump in maintaining low sarcoplasmic calcium concentrations is proposed. 相似文献