首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Programmed cell death (apoptosis) is well-established in many multicellular organisms. Apoptosis purifies a tissue from cells that became useless or even harmful for the organism. Similar phenomena are already described also at subcellular level (suicide of mitochondria, i.e., mitoptosis) as well as at supracellular level (degradation of some organs temporarily appearing in the course of ontogenesis and then disappearing by means of apoptosis of the organ-composing cells). Following the same logic, one may put a question about programmed death of an organism as a mechanism of purification of a kin, community of organisms, or population from individuals who became unwanted for this kin, etc. A putative mechanism of such kind is proposed to be coined "phenoptosis" by analogy with apoptosis and mitoptosis. In a unicellular organism (the bacterium Escherichia coli), three different biochemical mechanisms of programmed death are identified. All of them are actuated by the appearance of phages inside the bacterial cell. This may be regarded as a precedent of phenoptosis which prevents expansion of the phage infection among E. coli cells. Purification of a population from infected individuals looks like an evolutionary invention useful for a species. Such an invention has high chances to be also employed by multicellular organisms. Most probably, septic shock in animals and humans serves as an analog of the phage-induced bacterial phenoptosis. It is hypothesized that the stress-induced ischemic diseases of brain and heart as well as carcinogenesis if they are induced by repeated stresses also represent phenoptoses that, in contrast to sepsis, are age-dependent. There are interrelations of programmed death phenomena at various levels of complexity of the living systems. Thus, extensive mitoptosis in a cell leads to apoptotic death of this cell and extensive apoptosis in an organ of vital importance results in phenoptotic death of an individual. In line with this logic, some cases are already described when inhibition of apoptosis strongly improves the postischemic state of the organism.  相似文献   

2.
The review summarizes the present state of our knowledge concerning alternative functions of mitochondria, namely energy conservation in forms of protonic potential and ATP, thermoregulatory energy dissipation as heat, production of useful substances, decomposition of harmful substances, control of cellular processes. The recent progress in understanding of some mitochondrion-linked pathologies is described. The role of reactive oxygen species in these processes is stressed. Possible mechanisms of programmed death of mitochondrion (mitoptosis), cell (apoptosis) and organism (phenoptosis) are considered. A concept is put forward assuming that mitoptosis is involved in some types of apoptosis whereas apoptosis can be a part of a phenoptotic cascade. It is hypothesized that septic shock, as well as the stress-induced brain and heart ischemic diseases and cancer, exemplify mechanisms of phenoptosis purifying population, community of organisms or kin from dangerous or useless individuals.  相似文献   

3.
Bioenergetic aspects of apoptosis, necrosis and mitoptosis   总被引:6,自引:2,他引:4  
In this review I summarize interrelations between bioenergetic processes and such programmed death phenomena as cell suicide (apoptosis and necrosis) and mitochondrial suicide (mitoptosis). The following conclusions are made. (I) ATP and rather often mitochondrial hyperpolarization (i.e. an increase in membrane potential, ΔΨ) are required for certain steps of apoptosis and necrosis. (II) Apoptosis, even if it is accompanied by ΔΨ and [ATP] increases at its early stage, finally results in a ΔΨ collapse and ATP decrease. (III) Moderate (about three-fold) lowering of [ATP] for short and long periods of time induces apoptosis and necrosis, respectively. In some types of apoptosis and necrosis, the cell death is mediated by a ΔΨ-dependent overproduction of ROS by the initial (Complex I) and the middle (Complex III) spans of the respiratory chain. ROS initiate mitoptosis which is postulated to rid the intracellular population of mitochondria from those that are ROS overproducing. Massive mitoptosis can result in cell death due to release to cytosol of the cell death proteins normally hidden in the mitochondrial intermembrane space.  相似文献   

4.
The impressive performance of the research in mitochondrial genetics and human aging in the last decade outlines a new scenery in which the inherited variation of the mitochondrial genome (mtDNA) may play a role in rate and quality of aging. This variation in humans was initially looked at as nearly neutral, and useful just for the reconstruction of human population history. However, recent data suggest that different mtDNA molecules are qualitatively different from each other. The aim of this paper is to discuss current ideas on the relationships among mitochondrial function, mtDNA inherited variation, and aging. The main processes where the mitochondrion is involved and the importance these processes have on aging and death of individuals will be described. A possible connection between programmed death phenomena (mitoptosis, apoptosis, phenoptosis) and rate and quality of aging will be discussed. Finally, the possible role played in these processes by the mtDNA germline variation will be explored.  相似文献   

5.
The current view on phenoptosis and apoptosis as genetic programs aimed at eliminating potentially dangerous organisms and cells, respectively, is given. Special emphasis is placed on apoptosis (phenoptosis) in yeasts: intracellular defects and a plethora of external stimuli inducing apoptosis in yeasts; distinctive morphological and biochemical hallmarks accompanying apoptosis in yeasts; pro- and antiapoptotic factors involved in yeast apoptosis signaling; consecutive stages of apoptosis from external stimulus to the cell death; a prominent role of mitochondria and other organelles in yeast apoptosis; possible pathways for release of apoptotic factors from the intermembrane mitochondrial space into the cytosol are described. Using some concrete examples, the obvious physiological importance and expediency of altruistic death of yeast cells is shown. Poorly known aspects of yeast apoptosis and prospects for yeast apoptosis study are defined.  相似文献   

6.
Phenoptosis is the death of an organism programmed by its genome. Numerous examples of phenoptosis are described in prokaryotes, unicellular eukaryotes, and all kingdoms of multicellular eukaryotes (animals, plants, and fungi). There are very demonstrative cases of acute phenoptosis when actuation of a specific biochemical or behavioral program results in immediate death. Rapid (taking days) senescence of semelparous plants is described as phenoptosis controlled by already known genes and mediated by toxic phytohormones like abscisic acid. In soya, the death signal is transmitted from beans to leaves via xylem, inducing leaf fall and death of the plant. Mutations in two genes of Arabidopsis thaliana, required for the flowering and subsequent formation of seeds, prevent senescence, strongly prolonging the lifespan of this small semelparous grass that becomes a big bush with woody stem, and initiate substitution of vegetative for sexual reproduction. The death of pacific salmon immediately after spawning is surely programmed. In this case, numerous typical traits of aging, including amyloid plaques in the brain, appear on the time scale of days. There are some indications that slow aging of higher animals and humans is also programmed, being the final step of ontogenesis. It is assumed that stepwise decline of many physiological functions during such aging increases pressure of natural selection on organisms stimulating in this way biological evolution. As a working hypothesis, the biochemical mechanism of slow aging is proposed. It is assumed that mitochondria-generated reactive oxygen species (ROS) is a tool to stimulate apoptosis, an effect decreasing with age the cell number (cellularity) of organs and tissues. A group of SkQ-type substances composed of plastoquinone and a penetrating cation were synthesized to target an antioxidant into mitochondria and to prevent the age-linked rise of the mitochondrial ROS level. Such targeting is due to the fact that mitochondria are the only cellular organelles that are negatively charged compared to the cytosol. SkQs are shown to strongly decrease concentration of ROS in mitochondria, prolong lifespan of fungi, invertebrates, fish, and mammals, and retard appearance of numerous traits of aging. Clinical trials of SkQ1 (plastoquinonyl decyltriphenylphosphonium) have been successfully completed so that the Ministry of Health of the Russian Federation recommends drops of very dilute (0.25 μM) solution of this antioxidant as a medicine to treat the syndrome of dry eye, which was previously considered an incurable disease developing with age. These drops are already available in drugstores. Thus, SkQ1 is the first mitochondria-targeted drug employed in medical practice.  相似文献   

7.
Mitoptosis was described as a sort of mitochondrial death program. It could be associated with both necrosis and apoptosis, although degenerating mitochondria are also found in autophagic vacuoles. It was demonstrated that several molecules might contribute to the remodeling and rearrangement of mitochondrial membranes, leading to mitochondria rupture and disruption. Here, we hypothesize that, at least in T cells, two main pathways of mitoptosis can occur: an inner membrane mitoptosis (IMM), in which only the internal matrix and cristae are lost while the external mitochondrial envelope remains unaltered, and an outer membrane mitoptosis (OMM) where only swollen internal cristae are detected as remnants. We suggest that the study of these processes could provide useful insights not only to the field of cell death but also to the study of the pathogenic mechanisms of mitochondria-associated human diseases.  相似文献   

8.
Mitochondrial morphology within cells is controlled by precisely regulated rates of fusion and fission . During programmed cell death (PCD), mitochondria undergo extensive fragmentation and ultimately caspase-independent elimination through a process known as mitoptosis . Though this increased fragmentation is due to increased fission through the recruitment of the dynamin-like GTPase Drp1 to mitochondria , as well as to a block in mitochondrial fusion , cellular mechanisms underlying these processes remain unclear. Here, we describe a mechanism for the increased mitochondrial Drp1 levels and subsequent stimulation of mitochondrial fission seen during PCD. We observed Bax/Bak-mediated release of DDP/TIMM8a, a mitochondrial intermembrane space (IMS) protein , into the cytoplasm, where it binds to and promotes the mitochondrial redistribution of Drp1, a mediator of mitochondrial fission. Using both loss- and gain-of-function assays, we also demonstrate that the Drp1- and DDP/TIMM8a-dependent mitochondrial fragmentation observed during PCD is an important step in mitoptosis, which in turn is involved in caspase-independent cell death. Thus, following Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP), IMS proteins released comprise not only apoptogenic factors such as cytochrome c involved in caspase activation but also DDP/TIMM8a, which activates Drp1-mediated fission to promote mitochondrial fragmentation and subsequently elimination during PCD.  相似文献   

9.
Cardiolipin (CL) is essential for the functionality of several mitochondrial proteins. Its distribution between the inner and outer leaflet of the mitochondrial internal membrane is crucial for ATP synthesis. We have investigated alterations in CL distribution during the early phases of apoptosis. Using two classical models (staurosporine-treated HL-60 cells and tumor necrosis factor alpha-treated U937 cells), we found that in apoptotic cells CL moves to the outer leaflet of mitochondrial inner membrane in a time-dependent manner. This occurs before the appearance of apoptosis markers such as plasma-membrane exposure of phosphatidylserine, changes in mitochondrial membrane potential, DNA fragmentation, but after the production of reactive oxygen species. The exposure of a phospholipid on the outer surface during apoptosis thus occurs not only at the plasma membrane level but also in mitochondria, reinforcing the hypothesis of mitoptosis as a crucial regulating system for programmed cell death, also occurring in cancer cells after treatment with antineoplastic agents.  相似文献   

10.
Apoptosis is a process of cell suicide whereby individual cells are destroyed while preserving the integrity and architecture of surrounding tissue. This targeted cell destruction is critical both in physiological contexts as well as pathological states. It seems increasingly evident that mitochondria play an important role in the regulation of programmed cell death via release of proapoptotic agents and/or disruption of cellular energy metabolism. The mechanisms of mitochondrial involvement are beginning to be elucidated, and may involve the participation of bcl-2 family members, reactive oxygen species, and caspases. As part of a central mechanism of amplification of the apoptotic signal, mitochondria may be an appropriate target for therapeutic agents designed to modulate apoptosis. This review focuses on recent advances in understanding mitochondrial mechanisms in apoptosis and the involvement of these pathways in human disease.  相似文献   

11.
《Autophagy》2013,9(3):282-284
Mitoptosis was described as a sort of mitochondrial death program. It could be associated with both necrosis and apoptosis, although degenerating mitochondria are also found in autophagic vacuoles. It was demonstrated that several molecules might contribute to the remodeling and rearrangement of mitochondrial membranes, leading to mitochondria rupture and disruption. Here, we hypothesize that, at least in T cells, two main pathways of mitoptosis can occur: an inner membrane mitoptosis (IMM), in which only the internal matrix and cristae are lost while the external mitochondrial envelope remains unaltered, and an outer membrane mitoptosis (OMM) where only swollen internal cristae are detected as remnants. We suggest that the study of these processes could provide useful insights not only to the field of cell death but also to the study of the pathogenic mechanisms of mitochondria-associated human diseases.

Addendum to:

Death Receptor Ligation Triggers Membrane Scrambling Between Golgi and Mitochondria

S. Ouasti, P. Matarrese, R. Paddon, R. Khosravi-Far, M. Sorice, A. Tinari, W. Malorni, M. Degli Esposti

Cell Death Differ 2006; Epub ahead of print  相似文献   

12.
Apoptosis: a mitochondrial perspective on cell death   总被引:5,自引:0,他引:5  
Mitochondria play an important role in both the life and death of cells. The past 7-8 years have seen an intense surge in research devoted toward understanding the critical role of mitochondria in the regulation of cell death. Mitochondria have, next to their function in respiration, an important role in apoptotic signaling pathway. Apoptosis is a form of programmed cell death important in the development and tissue homeostasis of multicellular organisms. Apoptosis can be initiated by a wide array of stimuli, including multiple signaling pathways that, for the most part, converge at the mitochondria. Although classically considered the powerhouses of the cell, it is now understood that mitochondria are also "gatekeepers" that ultimately determine the fate of the cell. Malfunctioning at any level of the cell is eventually translated in the release of apoptogenic factors from the mitochondrial intermembrane space resulting in the organized demise of the cell. These mitochondrial factors may contribute to both caspase-dependent and caspase-independent processes in apoptotic cell death. In addition, several Bcl-2 family members and other upstream proteins also contribute to and regulate the apoptosis. In this review, we attempt to summarize our current view of the mechanism that leads to the influx and efflux of many proteins from/to mitochondria during apoptosis.  相似文献   

13.
Programmed execution of various cells and intracellular structures is hypothesized to be not the only example of elimination of biological systems — the general mechanism can also involve programmed execution of organs and organisms. Modern rating of programmed cell death mechanisms includes 13 mechanistic types. As for some types, the mechanism of actuation and manifestation of cell execution has been basically elucidated, while the causes and intermediate steps of the process of fatal failure of organs and organisms remain unknown. The analysis of deaths resulting from a sudden heart arrest or multiple organ failure and other acute and chronic pathologies leads to the conclusion of a special role of mitochondria and oxidative stress activating the immune system. Possible mechanisms of mitochondria-mediated induction of the signaling cascades involved in organ failure and death of the organism are discussed. These mechanisms include generation of reactive oxygen species and damage-associated molecular patterns in mitochondria. Some examples of renal failure-induced deaths are presented with mechanisms and settings determined by some hypothetical super system rather than by the kidneys themselves. This system plays the key role in the process of physiological senescence and termination of an organism. The facts presented suggest that it is the immune system involved in mitochondrial signaling that can act as the system responsible for the organism’s death.  相似文献   

14.
In multicellular organisms and in all protozoans harbouring mitochondria, the pathways leading to programmed cell death (PCD) are localized in the mitochondria. Intriguingly, unicellular parasites devoid of mitochondria such as Trichomonas vaginalis and Giardia intestinalis undergo a form of cell death resembling apoptosis, the most frequent form of PCD. This reinforces the idea that PCD must have evolved before the evolution of multicellularity. Moreover, this leads to the hypothesis of an early emergence of death pathways in eukaryotes preceding mitochondrial endosymbiosis and brings into question the central role of mitochondria in PCD.  相似文献   

15.
For a long time mitochondria have mainly been considered for their role in the aerobic energy production in eukaryotic cells, being the sites of the oxidative phosphorylation, which couples the electron transfer from respiratory substrates to oxygen with the ATP synthesis. Subsequently, it was showed that electron transfer along mitochondrial respiratory chain also leads to the formation of radicals and other reactive oxygen species, commonly indicated as ROS. The finding that such species are able to damage cellular components, suggested mitochondrial involvement in degenerative processes underlying several diseases and aging.More recently, a new role for mitochondria, as a system able to supply protection against cellular oxidative damage, is emerging. Experimental evidence indicates that the systems, evolved to protect mitochondria against endogenously produced ROS, can also scavenge ROS produced by other cellular sources. It is possible that this action, particularly relevant in physio-pathological conditions leading to increased cellular ROS production, is more effective in tissues provided with abundant mitochondrial population. Moreover, the mitochondrial dysfunction, resulting from ROS-induced inactivation of important mitochondrial components, can be attenuated by the cell purification from old ROS-overproducing mitochondria, which are characterized by high susceptibility to oxidative damage. Such an elimination is likely due to two sequential processes, named mitoptosis and mitophagy, which are usually believed to be induced by enhanced mitochondrial ROS generation. However, they could also be elicited by great amounts of ROS produced by other cellular sources and diffusing into mitochondria, leading to the elimination of the old dysfunctional mitochondrial subpopulation.  相似文献   

16.
In most multicellular organisms, the decision to undergo programmed cell death in response to cellular damage or developmental cues is typically transmitted through mitochondria. It has been suggested that an exception is the apoptotic pathway of Drosophila melanogaster, in which the role of mitochondria remains unclear. Although IAP antagonists in Drosophila such as Reaper, Hid and Grim may induce cell death without mitochondrial membrane permeabilization, it is surprising that all three localize to mitochondria. Moreover, induction of Reaper and Hid appears to result in mitochondrial fragmentation during Drosophila cell death. Most importantly, disruption of mitochondrial fission can inhibit Reaper and Hid-induced cell death, suggesting that alterations in mitochondrial dynamics can modulate cell death in fly cells. We report here that Drosophila Reaper can induce mitochondrial fragmentation by binding to and inhibiting the pro-fusion protein MFN2 and its Drosophila counterpart dMFN/Marf. Our in vitro and in vivo analyses reveal that dMFN overexpression can inhibit cell death induced by Reaper or γ-irradiation. In addition, knockdown of dMFN causes a striking loss of adult wing tissue and significant apoptosis in the developing wing discs. Our findings are consistent with a growing body of work describing a role for mitochondrial fission and fusion machinery in the decision of cells to die.  相似文献   

17.
Given the importance of apoptosis in the pathogenesis of virus infections in mammals, we investigated the possibility that unicellular organisms also respond to viral pathogens by activating programmed cell death. The M1 and M2 killer viruses of Saccharomyces cerevisiae encode pore-forming toxins that were assumed to kill uninfected yeast cells by a nonprogrammed assault. However, we found that yeast persistently infected with these killer viruses induce a programmed suicide pathway in uninfected (nonself) yeast. The M1 virus-encoded K1 toxin is primarily but not solely responsible for triggering the death pathway. Cell death is mediated by the mitochondrial fission factor Dnm1/Drp1, the K+ channel Tok1, and the yeast metacaspase Yca1/Mca1 encoded by the target cell and conserved in mammals. In contrast, cell death is inhibited by yeast Fis1, a pore-forming outer mitochondrial membrane protein. This virus-host relationship in yeast resembles that of pathogenic human viruses that persist in their infected host cells but trigger programmed death of uninfected cells.  相似文献   

18.
Arachidonic acid and, to a smaller extent, oleic acid at micromolar concentrations decreased the mitochondrial membrane potential within AS-30D rat hepatoma cells cultivated in vitro and increased cell respiration. The uncoupling effect of both fatty acids on cell respiration was partly prevented by cyclosporin A, blocker of the mitochondrial permeability transition pore. Arachidonic acid increased the rate of reactive oxygen species (ROS) production, while oleic acid decreased it. Both fatty acids induced apoptotic cell death of AS-30D cells, accompanied by the release of cytochrome c from mitochondria to the cytosol, activation of caspase-3 and association of proapoptotic Bax protein with mitochondria; arachidonic acid being a more potent inducer than oleic acid. Trolox, a potent antioxidant, prevented ROS increase induced by arachidonic acid and protected the cells against apoptosis produced by this fatty acid. It is concluded that arachidonic and oleic acids induce apoptosis of AS-30D hepatoma cells by the mitochondrial pathway but differ in the mechanism of their action: Arachidonic acid induces apoptosis mainly by stimulating ROS production, whereas oleic acid may contribute to programmed cell death by activation of the mitochondrial permeability transition pore.  相似文献   

19.
Although mitochondria are crucial for most pathways of mammalian cell apoptosis, evidence for their role in classic invertebrate models of programmed cell death has been frustratingly scant. New work showing that inhibition of mitochondrial fragmentation during C. elegans development inhibits programmed cell death bridges this gap and should advance a more detailed understanding of the role of mitochondria in caspase activation.  相似文献   

20.
Apoptosis, a phenotype of programmed cell death involved in development and tissue homeostasis of multicellular organisms, brings into two major pathways and implies a central sensor: the mitochondria. Abnormalities in the cell death control can lead to a variety of diseases and many pathogenic agents target the mitochondria, especially affecting its permeability in order to induce cell death. HIV infection is linked to progressive CD4 T cell depletion. Among the different hypothesis that may explain T cell depletion, apoptosis is one of the main described mechanisms. This review provides current knowledge in HIV-mediated mitochondrial damage due to (i) HIV-specific proteins, (ii) death-by-neglect and (iii) side effects of the HIV drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号