首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The late-nineteenth/early-twentieth century debate over homologous versus antithetic alternation of generations is reviewed. Supporters of both theories, at first, used Coleochaete as a model for the origin of land-plant life cycles. The early debate focused on the morphological interpretation of the sporophyte and on whether vascular cryptogams had bryophyte-like ancestors. The terms of the debate shifted after the discovery that the alternation of morphological generations was accompanied by an alternation of chromosome number. Supporters of homologous alternation now promoted a model in which land plants had been derived from an algal ancestor with an isomorphic alternation of haploid and diploid generations whereas supporters of antithetic alternation favored a model in which land plants were derived from a haploid algal ancestor with zygotic meiosis. Modern evidence that embryophytes are derived from charophycean green algae is more compatible with an updated version of the antithetic theory.  相似文献   

3.
Embryophytes (land plants) are distinguished from their green algal ancestors by diplobiontic life cycles,that is,alternation of multicellular gametophytic and sporophytic generations.The bryophyte sporophyte is small and matrotrophic on the dominant gametophyte; extant vascular plants have an independent,dominant sporophyte and a reduced gametophyte.The elaboration of the diplobiontic life cycle in embryophytes has been thoroughly discussed within the context of the Antithetic and the Homologous Theories.The Antithetic Theory proposes a green algal ancestor with a gametophyte-dominant haplobiontic life cycle.The Homologous Theory suggests a green algal ancestor with alternation of isomorphic generations.The shifts that led from haplobiontic to diplobiontic life cycles and from gametophytic to sporophytic dominance are most probably related with terrestrial habitats.Cladistic studies strongly support the Antithetic Theory in repeatedly identifying charophycean green algae as the closest relatives of land plants.In recent years,exceptionally well-preserved axial gametophytes have been described from the Rhynie chert (Lower Devonian,410 Ma),and the complete life cycle of several Rhynie chert plants has been reconstructed.All show an alternation of more or less isomorphic generations,which is currently accepted as the plesiomorphic condition among all early polysporangiophytes,including basal tracheophytes.Here we review the existing evidence for early embryophyte gametophytes.We also discuss some recently discovered plants preserved as compression fossils and interpreted as gametophytes.All the fossil evidence supports the Antithetic Theory and indicates that the gametophytic generation/sporophytic generation size and complexity ratios show a gradual decrease along the land plant phylogenetic tree.  相似文献   

4.
Abstract Embryophytes (land plants) are distinguished from their green algal ancestors by diplobiontic life cycles, that is, alternation of multicellular gametophytic and sporophytic generations. The bryophyte sporophyte is small and matrotrophic on the dominant gametophyte; extant vascular plants have an independent, dominant sporophyte and a reduced gametophyte. The elaboration of the diplobiontic life cycle in embryophytes has been thoroughly discussed within the context of the Antithetic and the Homologous Theories. The Antithetic Theory proposes a green algal ancestor with a gametophyte‐dominant haplobiontic life cycle. The Homologous Theory suggests a green algal ancestor with alternation of isomorphic generations. The shifts that led from haplobiontic to diplobiontic life cycles and from gametophytic to sporophytic dominance are most probably related with terrestrial habitats. Cladistic studies strongly support the Antithetic Theory in repeatedly identifying charophycean green algae as the closest relatives of land plants. In recent years, exceptionally well‐preserved axial gametophytes have been described from the Rhynie chert (Lower Devonian, 410 Ma), and the complete life cycle of several Rhynie chert plants has been reconstructed. All show an alternation of more or less isomorphic generations, which is currently accepted as the plesiomorphic condition among all early polysporangiophytes, including basal tracheophytes. Here we review the existing evidence for early embryophyte gametophytes. We also discuss some recently discovered plants preserved as compression fossils and interpreted as gametophytes. All the fossil evidence supports the Antithetic Theory and indicates that the gametophytic generation/sporophytic generation size and complexity ratios show a gradual decrease along the land plant phylogenetic tree.  相似文献   

5.
A cladistic approach to the phylogeny of the “Bryophytes”   总被引:1,自引:0,他引:1  
The importance of a cladistic approach in reconstructing the phylogeny of bryophytes is discussed and illustrated by an analysis of the major groups of bryophytes with respect to the tracheophytes and the green algae. The cladistic analysis, using 51 characters taken from the literature, gives the following tentative results: (1) the embryophytes as a whole are monophyletic; (2) the bryophytes (sensu lato) are paraphyletic; (3) the mosses share a more recent common ancestor with the tracheophytes than do the liverworts or hornworts; (4) the hornworts appear to share a more recent common ancestor with the moss-tracheophyte lineage than with the liverworts; however, the existence of several homoplasies makes this placement more problematical; (5) the origin of alternation of generations in the embryophytes, based on out-group comparison with their oogamous, haplontic, algal sister groups, was by progressive elaboration of the primitively epiphytic sporophyte generation; and (6) the presence of vascular tissue (xylem and phloem) can best be interpreted as a synapomorphy of the moss-tracheophyte clade, and tracheids (xylem with ornamented walls) as a synapomorphy of the tracheophytes; therefore, the prevailing designation of “vascular plants” for the tracheophytes alone is inaccurate.  相似文献   

6.
Current ideas on the evolution of alternation of generations in land plants are reviewed in the context of important recent advances in plant systematics and the discovery of remarkable new palaeobotanical evidence on early embryophyte life cycles. An overview of relationships in major groups of green plants is presented together with a brief review of the early fossil record as a prelude to discussing hypotheses of life cycle evolution. Recent discoveries of life cycles in the early fossil record are described and assessed. The newly discovered gametophyte and sporophyte associations are based on exceptionally well-preserved material from the Rhynie Chert, Scotland (Middle Devonian: 380–408 Myr) and compression fossils from other Devonian localities. These data document diplobiontic life cycles in plants at the ‘protracheophyte’ and early tracheophyte level of organization. Furthermore, the early fossils have a more or less isomorphic alternation of generations, a striking departure from life cycles in extant embryophytes. This unexpected similarity between gametophyte and sporophyte calls for a cautious approach in identifying ploidy level in early groups. Viewed in a systematic context, the neontological and palaeontological data contribute towards the formulation of a coherent hypothesis of life cycle evolution in major, early embryophyte groups. Evidence from extant groups strongly supports a single direct origin of the diplobiontic life cycles of land plants from haploid, haplobiontic life cycles in ancestral ‘charophycean algae’. The interest of the new palaeobotanical data lies in its relevance to life cycle evolution at the restricted level of vascular plants rather than at the more general level of embryophytes (vascular plants plus ‘bryophytes’). The occurrence of morphologically complex, axial gametophytes in early vascular plants is consistent with the moss sister-group proposed in some cladistic analyses. Similarities of moss gametophytes to fossils in the vascular plant stem-group are discussed, and it is argued that the late appearance of mosses in the macrofossil record may be due to the problem of recognizing stem-group taxa. The new palaeobotanical evidence conflicts with previous hypotheses based on extant groups that interpret morphological simplicity as the plesiomorphic condition in the gametophytes of vascular plants. These new data indicate that a significant elaboration of both gametophyte and sporophyte occurred early in the tracheophyte lineage, and that the gametophytes of extant ‘pteridophytes’ are highly reduced compared to those of some of the earliest ‘protracheophytes’. Vestiges of this early morphological complexity may remain in the gametophytes of some extant groups such as Lycopodiaceae.  相似文献   

7.
The origin of land plants or embryophytes from the Charophyceae is generally accepted today by the botanists. In fact, numerous morphological, cytological, ultrastructural, biochemical and molecular characters are shared in these organisms. A fundamental problem is still constituted by the evolution of the sporophyte, i.e. the appearance of two different phase cycles (gametophyte/sporophyte alternance), although two theories ("antithetic" and "homologous") try to explain this evolutionary event.However, another phylogenetic dilemma is represented, in my opinion, either by the formation of bryophytes or by the transition from these first land plants to the pteridophytes, considering them at whole organism level.The bryophyte gametophyte is the most elaborate of the land plants. It presents several complex characters, principally the growth developmental form, the appearance of multicellular sex organs, antheridia and archegonia. Also the sporophyte shows a complicated structure that is not found in the other land plants or tracheophytes. The sporangium, in particular, exhibits some intricate morphological traits such as the peristome of true mosses for spore dispersion, the elaters of liverworts and the indeterminate growth in the hornworts.The pteridophytes are represented especially by their dominant sporophyte. This latter has the capacity to produce multiple sporangia and, in many cases, two kinds of spores which develop in male and female gametophyte (heterosporous pteridophytes). Another important characteristic of this sporophyte is its ability to become independent of the gametophyte. However, one of the most innovative character is the formation of true vascular elements (xylem and phloem).All these very large evolutionary jumps are discussed on the basis of the phyletic gradualistic neo-Darwinian theory and the punctuated equilibrium theory of Eldredge and Gould. In this context other genetic evolutionary mechanisms are also considered.Nevertheless, the origin of bryophytes and pteridophytes remain, at the moment, a mystery.  相似文献   

8.
Abstract— Separate cladistic analyses of the green algae, liverworts, and hornworts are presented. Classificatory and evolutionary implications of these analyses, in addition to our previously published cladistic analyses of mosses and the embryophytes as a whole, are discussed. The embryophytes are monophyletic, and are part of a larger monophyletic group that includes some of the green algae (the "charophytes"). Important evolutionary transformations in the early phylogeny of the land plants include: (1) retention of the zygote on the haploid plant (gametophyte), with the sporophyte generation arising de novo by delaying meiosis, (2) independent elaboration of an elongate sporophyte in some liverworts, some hornworts, and in the moss-tracheophyte clade, (3) independent origin of radial (axial) symmetry in the gametophyte in some liverworts and in the moss-tracheophyte clade, (4) independent origin of leaves on the gametophyte in some liverworts and in mosses, and (5) the unique development of a branching sporophyte with multiple sporangia in the tracheophytes.  相似文献   

9.
The origin of the sporophyte in land plants represents a fundamental phase in the plant evolution. Today this subject is controversial and, in my opinion, scarcely considered in our textbooks and journals of botany, in spite of its importance. There are two conflicting theories concerning the origin of the alternating generations in land plants: the "antithetic" and the "homologous" theory. These have never been fully resolved. The antithetic theory maintains that the sporophyte and gametophyte generations are fundamentally dissimilar and that the sporophyte originated in an ancestor organism with haplontic cycle by the zygote dividing mitotically rather than meiotically, and with a developmental pattern not copying the developmental events of the gametophyte. The sporophyte generation was an innovation of critical significance for the land-plant evolution. By contrast, the homologous theory simply stated that a mass of cells forming mitotically from the zygote adopted the same developmental plan of the gametophyte, but giving origin to a diploid sporophyte. In this context, a very important question concerns the possible ancestor or ancestors of the land plants. Considerable evidences at morphological, cytological, ultrastructural, biochemical and, especially, molecular level, strongly suggest that the land plants or Embryophyta (both vascular and non-vascular) evolved from green algal ancestor(s), similar to those belonging to the genus Coleochaete, Chara and Nitella, living today. Their organism is haploid for most of their life cycle, and diploid only in the zygote phase (haplontic cycle). On the contrary, the land plants are characterized by a diplo-haplontic life cycle. Several questions are implied in these theories, and numerous problems remain to be solved, such as, for example, the morphological difference between gametophyte and sporophyte (heteromorphism, already present in the first land plants, the bryophytes), and the strong gap existing between these last with a sporophyte dependent on the gametophyte, and the pteridophytes having the gametophyte and sporophyte generations independent. On the ground of all of the evidences on the ancestors of the land plants, the antithetic theory is considered more plausible than the homologous theory. Unfortunately, no phylogenetic relationship exists between some green algae with diplontic life cycle and the land plants. Otherwise, perhaps, it should be possible to hypothesize another scenario in which to place the origin of the alternating generations of the land plants. In this case, could the gametophyte be formed by gametes produced from the sporophyte, through their mitoses or a delayed fertilization process?  相似文献   

10.
Land plants possess a multicellular diploid stage (sporophyte) that begins development while attached to a multicellular haploid progenitor (gametophyte). Although the closest algal relatives of land plants lack a multicellular sporophyte, they do produce a zygote that grows while attached to the maternal gametophyte. The diploid offspring shares one haploid set of genes with the haploid mother that supplies it with resources and a paternal haploid complement that is not shared with the mother. Sexual conflict can arise within the diploid offspring because the offspring's maternal genome will be transmitted in its entirety to all other sexual and asexual offspring that the mother may produce, but the offspring's paternally derived genes may be absent from these other offspring. Thus, the selective forces favouring the evolution of genomic imprinting may have been present from the origin of modern land plants. In bryophytes, where gametophytes are long-lived and capable of multiple bouts of asexual and sexual reproduction, we predict strong sexual conflict over allocation to sporophytes. Female gametophytes of pteridophytes produce a single sporophyte and often lack means of asexual reproduction. Therefore, sexual conflict is predicted to be attenuated. Finally, we explore similarities among models of mate choice, offspring choice and segregation distortion.  相似文献   

11.
Characteristically, land plants exhibit a life cycle with an ‘alternation of generations’ and thus alternate between a haploid gametophyte and a diploid sporophyte. At meiosis and fertilisation the transitions between these two ontogenies take place in distinct single stem cells. The evolutionary invention of an embryo, and thus an upright multicellular sporophyte, in the ancestor of land plants formed the basis for the evolution of increasingly complex plant morphologies shaping Earth's ecosystems. Recent research employing the moss Physcomitrella patens revealed the homeotic gene BELL1 as a master regulator of the gametophyte‐to‐sporophyte transition. Here, we discuss these findings in the context of classical botanical observations.  相似文献   

12.
Fossil spores from mid-Ordovician deposits (475 million yr old) are the first indication of plants on land and predate megafossils of plants by 30-50 million yr. Sporopollenin-walled spores distinguish land plants from algae, which typically have heavy-walled zygotes that germinate via meiosis into motile or protonemal cells. All land plants are embryophytes with spores produced by the sporophyte generation. It is generally assumed that retention of the zygote and delay in meiosis led to matrotrophic embryo development and intercalation of the diploid sporophyte before spore production. However, new data on the cell biology of sporogenesis in extant bryophytes suggest that spores were produced directly from zygotes in protoembryophytes. The mechanism of wall transfer from zygote to meiospores was a three-phase heterochrony involving precocious initiation of cytokinesis, acceleration of meiosis, and concomitant delay in wall deposition. In bryophyte sporogenesis, cytokinesis is typically initiated in advance of meiosis, and quadrilobing of the cytoplasm is followed by development of a bizarre quadripolar spindle that assures coordination of nuclear distribution with predetermined spore domains. This concept of the innovation of sporogenesis at the onset of terrestrialization provides a new perspective for interpreting fossil evidence and understanding the evolution of land plants.  相似文献   

13.
Streptophyte algae and the origin of embryophytes   总被引:1,自引:0,他引:1  

Background

Land plants (embryophytes) evolved from streptophyte green algae, a small group of freshwater algae ranging from scaly, unicellular flagellates (Mesostigma) to complex, filamentous thalli with branching, cell differentiation and apical growth (Charales). Streptophyte algae and embryophytes form the division Streptophyta, whereas the remaining green algae are classified as Chlorophyta. The Charales (stoneworts) are often considered to be sister to land plants, suggesting progressive evolution towards cellular complexity within streptophyte green algae. Many cellular (e.g. phragmoplast, plasmodesmata, hexameric cellulose synthase, structure of flagellated cells, oogamous sexual reproduction with zygote retention) and physiological characters (e.g. type of photorespiration, phytochrome system) originated within streptophyte algae.

Recent Progress

Phylogenetic studies have demonstrated that Mesostigma (flagellate) and Chlorokybus (sarcinoid) form the earliest divergence within streptophytes, as sister to all other Streptophyta including embryophytes. The question whether Charales, Coleochaetales or Zygnematales are the sister to embryophytes is still (or, again) hotly debated. Projects to study genome evolution within streptophytes including protein families and polyadenylation signals have been initiated. In agreement with morphological and physiological features, many molecular traits believed to be specific for embryophytes have been shown to predate the Chlorophyta/Streptophyta split, or to have originated within streptophyte algae. Molecular phylogenies and the fossil record allow a detailed reconstruction of the early evolutionary events that led to the origin of true land plants, and shaped the current diversity and ecology of streptophyte green algae and their embryophyte descendants.

Conclusions

The Streptophyta/Chlorophyta divergence correlates with a remarkably conservative preference for freshwater/marine habitats, and the early freshwater adaptation of streptophyte algae was a major advantage for the earliest land plants, even before the origin of the embryo and the sporophyte generation. The complete genomes of a few key streptophyte algae taxa will be required for a better understanding of the colonization of terrestrial habitats by streptophytes.Key words: Chlorophyta, Streptophyta, Embryophyta, Charales, Coleochaetales, Zygnematales, viridiplant phylogeny, land plants, genome evolution, freshwater adaptation, sporophyte origin, diversification, extinction  相似文献   

14.
Actin is a highly conserved cytoskeletal protein that is a key component of cells. Genes encoding actin occur in single copies in most green algae, in 2–3 copies in bryophytes, and in increasingly more complex gene families in ferns and seed plants. We use the well-resolved phylogenetic frameworks of the Streptophyta as a guide to reconstruct the patterns of actin gene duplication in early diverging land plants. Our working hypothesis is that the origin of novel tissues in the bryophytes (e.g. multicellular sporophyte) may be reflected in the functional diversification of duplicate actin genes in these taxa. Actin is used as a model cytoskeletal protein with the assumption that its evolutionary history represents those of other cytoskeletal elements and the coevolved binding proteins. Here we provide a phylogenetic perspective on the origin of green algal and land plant actin genes and use this information to speculate on the role of plant actin in early plant evolution.  相似文献   

15.
Background Molecular phylogeny has resolved the liverworts as the earliest-divergent clade of land plants and mosses as the sister group to hornworts plus tracheophytes, with alternative topologies resolving the hornworts as sister to mosses plus tracheophytes less well supported. The tracheophytes plus fossil plants putatively lacking lignified vascular tissue form the polysporangiophyte clade. Scope This paper reviews phylogenetic, developmental, anatomical, genetic and paleontological data with the aim of reconstructing the succession of events that shaped major land plant lineages. Conclusions Fundamental land plant characters primarily evolved in the bryophyte grade, and hence the key to a better understanding of the early evolution of land plants is in bryophytes. The last common ancestor of land plants was probably a leafless axial gametophyte bearing simple unisporangiate sporophytes. Water-conducting tissue, if present, was restricted to the gametophyte and presumably consisted of perforate cells similar to those in the early-divergent bryophytes Haplomitrium and Takakia. Stomata were a sporophyte innovation with the possible ancestral functions of producing a transpiration-driven flow of water and solutes from the parental gametophyte and facilitating spore separation before release. Stomata in mosses, hornworts and polysporangiophytes are viewed as homologous, and hence these three lineages are collectively referred to as the 'stomatophytes'. An indeterminate sporophyte body (the sporophyte shoot) developing from an apical meristem was the key innovation in polysporangiophytes. Poikilohydry is the ancestral condition in land plants; homoiohydry evolved in the sporophyte of polysporangiophytes. Fungal symbiotic associations ancestral to modern arbuscular mycorrhizas evolved in the gametophytic generation before the separation of major present-living lineages. Hydroids are imperforate water-conducting cells specific to advanced mosses. Xylem vascular cells in polysporangiophytes arose either from perforate cells or de novo. Food-conducting cells were a very early innovation in land plant evolution. The inferences presented here await testing by molecular genetics.  相似文献   

16.
As the oldest extant lineages of land plants, bryophytes provide a living laboratory in which to evaluate morphological adaptations associated with early land existence. In this paper we examine reproductive and structural innovations in the gametophyte and sporophyte generations of hornworts, liverworts, mosses and basal pteridophytes. Reproductive features relating to spermatogenesis and the architecture of motile male gametes are overviewed and evaluated from an evolutionary perspective. Phylogenetic analyses of a data set derived from spermatogenesis and one derived from comprehensive morphogenetic data are compared with a molecular analysis of nuclear and mitochondrial small subunit rDNA sequences. Although relatively small because of a reliance on water for sexual reproduction, gametophytes of bryophytes are the most elaborate of those produced by any land plant. Phenotypic variability in gametophytic habit ranges from leafy to thalloid forms with the greatest diversity exhibited by hepatics. Appendages, including leaves, slime papillae and hairs, predominate in liverworts and mosses, while hornwort gametophytes are strictly thalloid with no organized external structures. Internalization of reproductive and vegetative structures within mucilage-filled spaces is an adaptive strategy exhibited by hornworts. The formative stages of gametangial development are similar in the three bryophyte groups, with the exception that in mosses apical growth is intercalated into early organogenesis, a feature echoed in moss sporophyte ontogeny. A monosporangiate, unbranched sporophyte typifies bryophytes, but developmental and structural innovations suggest the three bryophyte groups diverged prior to elaboration of this generation. Sporophyte morphogenesis in hornworts involves non-synchronized sporogenesis and the continued elongation of the single sporangium, features unique among archegoniates. In hepatics, elongation of the sporophyte seta and archegoniophore is rapid and requires instantaneous wall expandability and hydrostatic support. Unicellular, spiralled elaters and capsule dehiscence through the formation of four regular valves are autapomorphies of liverworts. Sporophytic sophistications in the moss clade include conducting tissue, stomata, an assimilative layer and an elaborate peristome for extended spore dispersal. Characters such as stomata and conducting cells that are shared among sporophvtes of mosses, hornworts and pteridophytes are interpreted as parallelisms and not homologies. Our phylogenetic analysis of three different data sets is the most comprehensive to date and points to a single phylogenetic solution for the evolution of basal embryophytes. Hornworts are supported as the earliest divergent embryophyte clade with a moss/liverwort clade sister to tracheophytes. Among pteridophytes, lycophytes are monophyletic and an assemblage containing ferns, Equisetum and psilophytes is sister to seed plants. Congruence between morphological and molecular hypotheses indicates that these data sets are tracking the same phylogenetic signal and reinforces our phylogenetic conclusions. It appears that total evidence approaches are valuable in resolving ancient radiations such as those characterizing the evolution of early embryophytes. More information on land plant phylogeny can be found at: http: //www.science.siu.edu/ landplants/index.html.  相似文献   

17.
R L Chapman  M A Buchheim 《Bio Systems》1992,28(1-3):127-137
Phylogenetic analysis of 381 informative sites in partial sequences of nuclear-encoded large and small subunit ribosomal RNAs from 38 chlorophyll a- and b-containing plants (Chlorobionta sensu Bremer) including tracheophytes, bryophytes, charophytes and chlorophytes, supports the hypotheses of: (1) monophyly of the green plants (excluding Euglenophyta); (2) monophyly of the embryophytes; (3) non-monophyly of the bryophytes; (4) monophyly of the tracheophytes; and (5) a single origin of embryophytes from charophycean green algae. The Charales and Klebsormidium appear to be the green algae most closely related to the land plants. The unexpected basal divergence of Coleochaete and the apparent non-monophyly of the Zygnematales are not robustly supported and, thus, are interpreted to be sources of new questions, rather than new phylogenetic hypotheses.  相似文献   

18.
 In order to investigate the occurrence of callose in dividing cells, we cultivated a selection of 30 organisms (the prokaryotic cyanobacterium Anabaena and eukaryotic green algae, bryophytes, ferns and seed plants) under defined conditions in the laboratory. Samples from these photoautotrophs, which are members of the evolutionary 'green lineage' leading from freshwater algae to land plants, were analysed by fluorescence microscopy. The β-1,3-glucan callose was identified by its staining properties with aniline blue and sirofluor. With the exception of the prokaryotic cyanobacterium, all of the eukaryotic organisms studied were capable of producing wound-induced callose. No callose was detected during cytokinesis of dividing cells of unicellular green algae (and Anabaena). However, in all of the multicellular green algae and land plants (embryophytes) investigated, callose was identified in newly made septae by an intense yellow fluorescence. The formation of wound callose was never detected in cells with callose in the newly formed septae. Additional experiments verified that no fixation-induced artefacts occurred. Our results show that callose is a regular component of developing septae in juvenile cells during cytokinesis in multicellular green algae and embryophytes. The implications of our results with respect to the evolutionary relationships between extant charophytes and land plants are discussed. Received: 15 September 2000 / Revision received: 23 October 2000 / Accepted: 23 October 2000  相似文献   

19.
Physiological correlates of the morphology of early vascular plants   总被引:8,自引:0,他引:8  
RAVEN, J. A., 1984. Physiological correlates of the morphology of early vascular plants. The early evolution of vascular land plants is considered in relation to the physiological problems of life on land. The universal characteristics of vascular plants (xylem, cuticle, stomata, intercellular air spaces, long-distance symplastic transport and alternation of generations) are discussed in terms of the essential properties of a homoiohydric phototroph. Likely precursors of vascular plants, and the physico-chemical and biotic environment in which they occurred, are outlined prior to a discussion of the selective forces acting on the evolution of vascular plants in the Upper Silurian and Lower Devonian. Emphasis is placed on biochemical and structural 'pre-adaptations' which may have occurred in the precursors of vascular plants and on which natural selection could have acted with lignified xylem, stomata, etc., as the end-products. Guiding principles in the analysis include the physiology of extant plants, physico-chemical constraints, and compatibility with the fossil record. It is concluded that the likely sequence of acquisition of vascular plant characteristics was: heteromorphic alternation of generations with an erect sporophyte; cuticularization of sporophyte; evolution of xylem; occurrence of intercellular air spaces with pores in the epidermis; stomatal activity of the pores. Endodermis and phloem-type long-distance transport probably originated around stages (3)-(5).  相似文献   

20.
Extant bryophytes are regarded as the closest living relatives of the first land plants, but relationships among the bryophyte classes (mosses, liverworts and hornworts) and between them and other embryophytes have remained unclear. We have recently found that plant mitochondrial genes with positionally stable introns are well suited for addressing questions of plant phylogeny at a deep level. To explore further data sets we have chosen to investigate the mitochondrial genes nad4 and nad7, which are particularly rich in intron sequences. Surprisingly, we find that in these genes mosses share three group II introns with flowering plants, but none with the liverwort Marchantia polymorpha or other liverworts investigated here. In mitochondria of Marchantia, nad7 is a pseudogene containing stop codons, but nad7 appears as a functional mitochondrial gene in mosses, including the isolated genus Takakia. We observe the necessity for strikingly frequent C-to-U RNA editing to reconstitute conserved codons in Takakia when compared to other mosses. The findings underline the great evolutionary distances among the bryophytes as the presumptive oldest division of land plants. A scenario involving differential intron gains from fungal sources in what are perhaps the two earliest diverging land plant lineages, liverworts and other embryophytes, is discussed. With their positionally stable introns, nad4 and nad7 represent novel marker genes that may permit a detailed phylogenetic resolution of early clades of land plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号