首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many biological processes such as cell proliferation, differentiation, and cell death depend precisely on the timely synthesis anddegradation of key regulatory proteins. While protein synthesis can be regulated at multiple levels, protein degradation is mainlycontrolled by the ubiquitineproteasome system (UPS), which consists of two distinct steps: (1) ubiquitylation of targeted protein by E1ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase, and (2) subsequent degradation by the 26Sproteasome. Among all E3 ubiquitin ligases, the SCF (SKP1-CUL1-F-box protein) E3 ligases are the largest family and are responsiblefor the turnover of many key regulatory proteins. Aberrant regulation of SCF E3 ligases is associated with various human diseases, such ascancers, including skin cancer. In this review, we provide a comprehensive overview of all currently published data to define a promotingrole of SCF E3 ligases in the development of skin cancer. The future directions in this area of research are also discussed with an ultimategoal to develop small molecule inhibitors of SCF E3 ligases as a novel approach for the treatment of human skin cancer. Furthermore,altered components or substrates of SCF E3 ligases may also be developed as the biomarkers for early diagnosis or predicting prognosis.  相似文献   

2.
3.
4.
The ubiquitin-proteasome pathway for protein degradation has emerged as one of the most important mechanisms for regulation of a wide spectrum of cellular functions in virtually all eukaryotic organisms. Specifically, in plants, the ubiquitin/26S proteasome system (UPS) regulates protein degradation and contributes significantly to development of a wide range of processes, including immune response, development and programmed cell death. Moreover, increasing evidence suggests that numerous plant pathogens, such as Agrobacterium, exploit the host UPS for efficient infection, emphasizing the importance of UPS in plant-pathogen interactions.The substrate specificity of UPS is achieved by the E3 ubiquitin ligase that acts in concert with the E1 and E2 ligases to recognize and mark specific protein molecules destined for degradation by attaching to them chains of ubiquitin molecules. One class of the E3 ligases is the SCF (Skp1/Cullin/F-box protein) complex, which specifically recognizes the UPS substrates and targets them for ubiquitination via its F-box protein component. To investigate a potential role of UPS in a biological process of interest, it is important to devise a simple and reliable assay for UPS-mediated protein degradation. Here, we describe one such assay using a plant cell-free system. This assay can be adapted for studies of the roles of regulated protein degradation in diverse cellular processes, with a special focus on the F-box protein-substrate interactions.  相似文献   

5.
The Wingless (Wg/Wnt) signaling pathway is essential for metazoan development, where it is central to tissue growth and cellular differentiation. Deregulated Wg pathway activation underlies severe developmental abnormalities, as well as carcinogenesis. Armadillo/β-Catenin plays a key role in the Wg transduction cascade; its cytoplasmic and nuclear levels directly determine the output activity of Wg signaling and are thus tightly controlled. In all current models, once Arm is targeted for degradation by the Arm/β-Catenin destruction complex, its fate is viewed as set. We identified a novel Wg/Wnt pathway component, Armless (Als), which is required for Wg target gene expression in a cell-autonomous manner. We found by genetic and biochemical analyses that Als functions downstream of the destruction complex, at the level of the SCF/Slimb/βTRCP E3 Ub ligase. In the absence of Als, Arm levels are severely reduced. We show by biochemical and in vivo studies that Als interacts directly with Ter94, an AAA ATPase known to associate with E3 ligases and to drive protein turnover. We suggest that Als antagonizes Ter94''s positive effect on E3 ligase function and propose that Als promotes Wg signaling by rescuing Arm from proteolytic degradation, spotlighting an unexpected step where the Wg pathway signal is modulated.  相似文献   

6.
The COP9 signalosome is a highly conserved eight-subunit protein complex initially defined as a repressor of photomorphogenic development in Arabidopsis. It has recently been suggested that the COP9 signalosome directly interacts and regulates SCF type E3 ligases, implying a key role in ubiquitin-proteasome mediated protein degradation. We report that Arabidopsis FUS11 gene encodes the subunit 3 of the COP9 signalosome (CSN3). The fus11 mutant is defective in the COP9 signalosome and accumulates significant amount of multi-ubiquitinated proteins. The same mutant is specifically impaired in the 26S proteasome-mediated degradation of HY5 but not PHYA, indicating a selective involvement in protein degradation. Reduction-of-function transgenic lines of CSN3 produced through gene co-suppression also accumulate multi-ubiquitinated proteins and exhibit diverse developmental defects. This result substantiates a hypothesis that the COP9 signalosome is involved in multifaceted developmental processes through regulating proteasome-mediated protein degradation.  相似文献   

7.
8.
SCF complexes are E3 ubiquitin-protein ligases that mediate degradation of regulatory and signaling proteins and control G1/S cell cycle progression by degradation of G1 cyclins and the cyclin-dependent kinase inhibitor, Sic1. Interchangeable F-box proteins bind the core SCF components; each recruits a specific subset of substrates for ubiquitylation. The F-box proteins themselves are rapidly turned over by autoubiquitylation, allowing rapid recycling of SCF complexes. Here we report a role for the UbL-UbA protein Ddi1 in the turnover of the F-box protein, Ufo1. Ufo1 is unique among F-box proteins in having a domain comprising multiple ubiquitin-interacting motifs (UIMs) that mediate its turnover. Deleting the UIMs leads to stabilization of Ufo1 and to cell cycle arrest at G1/S of cells with long buds resembling skp1 mutants. Cells accumulate substrates of other F-box proteins, indicating that the SCF pathway of substrate ubiquitylation is inhibited. Ufo1 interacts with Ddi1 via its UIMs, and Deltaddi1 cells arrest when full-length UFO1 is overexpressed. These results imply a role for the UIMs in turnover of SCF(Ufo1) complexes that is dependent on Ddi1, a novel activity for an UbL-UbA protein.  相似文献   

9.
10.
Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) were originally discovered as growth factors for hematopoietic stem cells (HSCs). It has been well defined that SCF and G-CSF contribute to regulation of lineage commitment for HSCs. However, little is known about whether SCF and G-CSF play roles in the determination and differentiation of neural stem cells (NSCs). Here we demonstrate the novel function of SCF and G-CSF in controlling cell cycle and cell fate determination of NSCs. We also observe that SCF and G-CSF promote neuronal differentiation and inhibit astroglial differentiation at the early stage of differentiation. In addition, our research data reveal that SCF in combination with G-CSF has a dual function in promoting cell cycle exit and directing neuronal fate commitment at the stage of NSC dividing. This coordination effect of SCF+G-CSF on cell cycle arrest and neuronal differentiation is through enhancing neurogenin 1 (Ngn1) activity. These findings extend current knowledge regarding the role of SCF and G-CSF in the regulation of neurogenesis and provide insights into the contribution of hematopoietic growth factors to brain development and remodeling.  相似文献   

11.
FBW7 is one of the most well characterized F-box proteins that serve as substrate recognition subunits of SCF (Skp1-Cullin 1-F-box proteins) E3 ubiquitin ligase complexes. SCFFBW7 plays key roles in regulating cell cycle progression, differentiation, and stem cell maintenance largely through targeting a broad range of oncogenic substrates for proteasome-dependent degradation. The identification of an increasing number of FBW7 substrates for ubiquitination, and intensive in vitro and in vivo studies have revealed a network of signaling components controlled by FBW7 that contributes to metabolic regulation as well as its tumor suppressor role. Here we mainly focus on recent findings that highlight a critical role for FBW7 in cancer and metabolism.  相似文献   

12.
13.
Ubiquitin, hormones and biotic stress in plants   总被引:21,自引:0,他引:21  
  相似文献   

14.
15.
泛素-蛋白酶体系统是一个主要的蛋白质降解调节通路,在细胞分裂过程中发挥着重要作用,其成员在肿瘤中频繁存在着表达异常现象.FBW7又名AGO、hCDC4、FBXW7和SEL-10,是一种拥有7串联WD40重复结构域的F-box蛋白,可作为SCF型泛素连接酶(E3)复合物的底物识别亚基发挥作用.FBW7是一种肿瘤抑制蛋白,其基因在多种肿瘤包括直肠癌、胃癌、卵巢癌和白血病中存在着基因突变或缺失.FBW7可直接结合和靶向作用多种转录激活因子或原癌基因,如周期蛋白E、c-Myc、c-Jun、Notch、MCL1、KLF5 和mTOR等并对其进行泛素化修饰和随后的26S蛋白酶体降解.肿瘤抑制蛋白FBW7的研究对肿瘤发生机制的理解具有重要意义,同时也为肿瘤的诊断和治疗提供了新的靶点.本文综述了FBW7的特征、肿瘤抑制作用及机制.  相似文献   

16.
17.
Canonical Wnt signaling plays important roles in regulating cell proliferation and differentiation. In this study, we report that inhibitor of differentiation (Id)3 is a Wnt-inducible gene in mouse C2C12 myoblasts. Wnt3a induced Id3 expression in a β-catenin-dependent manner. Bone morphogenetic protein (BMP) also potently induced Id3 expression. However, Wnt-induced Id3 expression occurred independent of the BMP/Smad pathway. Functional studies showed that Id3 depletion in C2C12 cells impaired Wnt3a-induced cell proliferation and alkaline phosphatase activity, an early marker of osteoblast cells. Id3 depletion elevated myogenin induction during myogenic differentiation and partially impaired Wnt3a suppressed myogenin expression in C2C12 cells. These results suggest that Id3 is an important Wnt/β-catenin induced gene in myoblast cell fate determination.  相似文献   

18.
Wnt-4, a member of the Wnt family of secreted signaling molecules, is essential for nephrogenesis, but its expression in the presumptive medulla suggests additional developmental roles in kidney organogenesis. We demonstrate here that Wnt-4 signaling plays also a role in the determination of the fate of smooth muscle cells in the medullary stroma of the developing kidney, as a differentiation marker, smooth muscle alpha-actin (alpha-SMA), is markedly reduced in the absence of its signaling. Wnt-4 probably performs this function by activating the Bmp-4 gene encoding a known differentiation factor for smooth muscle cells, since Bmp-4 gene expression was lost in the absence of Wnt-4 while Wnt-4 signaling led to a rescue of Bmp-4 expression and induction of alpha-SMA-positive cells in vitro. Recombinant Bmp-4 similarly rescued the differentiation of alpha-SMA-expressing cells in cultured Wnt-4-deficient embryonic kidney. The lack of smooth muscle cell differentiation leads to an associated deficiency in the pericytes around the developing vessels of the Wnt-4-deficient kidney and apparently leads to a secondary defect in the maturation of the kidney vessels. Thus, besides being critical for regulating mesenchymal to epithelial transformation in the cortical region in nephrogenesis, Wnt-4 signaling regulates the fate of smooth muscle cells in the developing medullary region.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号