首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We constructed a plasmid containing a protein transduction domain (PTD) and a human A20 (hA20) gene fragment; the fusion protein was obtained by highly expressing this plasmid in the yeast Pichia pastoris GS115. The plasmid was obtained by adding 9xArg and EcoR? recognition sites to the end of the primer, and 6xHis-Tag and Not? recognition sites to its end. After sequencing, the hA20 gene fragment was inserted into plasmid pPIC9k to construct expression vector pPIC9k-PTD-hA20; then, we transfected GS115 with the vector and induced PTD-hA20 protein expression. We purified protein from the yeast fermentation supernatant using a nickel column. Human umbilical vein endothelial cells (HUVECs) were cultured in high glucose medium (30 mM glucose) and in high glucose medium containing different concentrations of protein. Apoptosis of HUVECs was assayed by TUNEL 72 h later. The biological activity tests indicated that the fusion protein not only passed through the cell membrane freely, but also inhibited apoptosis of HUVECs induced by high glucose levels. We conclude that the fusion protein PTD-hA20 has potential for clinical use.  相似文献   

2.
3.
Dehydroepiandrosterone (DHEA), an adrenal steroid, has a protective role against diabetes; however, its mechanisms of action are unknown. Here, we focus on the effect of DHEA on the activation of endothelial cells induced by a high concentration of glucose. Adhesion on U937 cells, expression of adhesion molecules, production of ROS and NO, expression of eNOS, and translocation of NF-κB were evaluated in human umbilical vein endothelial cells (HUVEC) treated with high concentrations of glucose, DHEA, or both. High concentrations of glucose (>20mM) induced an increase in adhesion, an increment in mainly E-selectin and PECAM-1 expression, as well as in ROS and NO production, eNOS expression, translocation of NF-κB, and degradation of its inhibitor IκB-α. DHEA abolished adhesion and the increase of E-selectin, ICAM-1, VCAM-1, and PECAM-1 induced by glucose. In addition, DHEA completely blocked oxidative stress and decreased translocation of NF-κB and the degradation of IκB-α induced by glucose. These results suggest that DHEA protects against the activation of endothelial cells induced by high concentrations of glucose, indicating that DHEA could be useful in the treatment of hyperglycemia and diabetes.  相似文献   

4.
In the present study, we investigated the protective effect of zinc on the glucose-induced cytotoxicity in HeLa wild and HeLa-tat cells (30 and 20 mmol/l glucose, respectively). HeLa cells transfected with the protein Tat exhibit a lower antioxidant defense system. Incubation of HeLa wild and HeLa-tat cells with high glucose levels led to a rapid increase in generation of reactive oxygen species (ROS). As expected in the presence of high glucose concentrations, the viability was reduced for both cell lines. The redox status essentially regulated by thiol groups may play an important role in the apoptotic process. Thus, we developed a new method using the p-nitrophenyl disulfide to measure cytosolic thiol groups in intact cells. Cellular zinc was measured using inductively coupled plasma mass spectrometry. Intracellular thiol groups and intracellular zinc concentrations were significantly lower in HeLa cells cultured in hyperglycemic conditions, and their concentrations were significantly lower in HeLa-tat cells than in HeLa wild cells. However, the generation of ROS and the induction of apoptosis by a glucose specific mechanism were prevented by zinc (50 micromol/l) and the intracellular thiol groups and zinc concentrations significantly increased in both cell lines to become similar to the initial values. These results suggest that the glucose oxidation and its subsequent effects on the cells can be prevented by a biological antioxidant such as zinc.  相似文献   

5.
Resistance against the cytotoxic actions of tumor necrosis factor alpha (TNF) is an active process requiring the synthesis of TNF-inducible proteins. The specific TNF-induced proteins so far identified (manganese superoxide dismutase and plasminogen activator inhibitor type 2) as having a role in resistance against TNF cytotoxicity are able to confer only partial protection to cells, suggesting that other genes are involved. A20 is a TNF-induced primary response gene which encodes a novel zinc finger protein. In this report we demonstrate that A20 protein is induced by TNF in a variety of cells. A survey of A20 expression in human breast carcinoma cell lines that are either sensitive or resistant to TNF cytotoxicity revealed increased expression of A20 message and protein in TNF-resistant cells. Constitutive expression of A20 after stable transfection of NIH 3T3 and WEHI 164 cells results in significant, but partial, resistance to TNF cytotoxicity. This work gives additional support to a role for TNF-induced immediate early response genes in protecting cells from TNF-induced death.  相似文献   

6.
Elevated blood glucose and free fatty acids induce oxidative stress associated with the incidence of cardiovascular disease. In contrast, laminar shear stress (LSS) plays a critical role in maintaining vascular health. The present study examined the mechanism for the antioxidant effect of LSS attenuating the oxidative stress induced by high glucose (HG) and arachidonic acid (AA) in human umbilical vein endothelial cells. HG and AA synergistically decreased cell viability and increased glutathione (GSH) oxidation and lipid peroxidation. The lipid peroxidation was markedly prevented by LSS as well as tetrahydrobiopterin (BH4) and GSH. LSS increased BH4 and GSH contents, and expression of GTP cyclohydrolase-1 and glutamylcysteine ligase (GCL) involved in their biosynthesis. Inhibition of GCL activity by DL-buthionine-(S,R)-sulfoximine and small-interfering RNA-mediated knockdown of GCL lessened the antioxidant effect of LSS. Therefore, it is suggested that LSS enhances antioxidant capacity of endothelial cells and thereby attenuates the oxidative stress caused by cardiovascular risk factors.  相似文献   

7.
In diabetes, the number of bone mesenchymal stem cells (MSCs) decreases and their differentiation is impaired. However, the exact mechanism is unclear. Patients with diabetes often experience sympathetic nerve injury. Norepinephrine (NE), a major mediator of the sympathetic nervous system, influences rat MSC migration in culture and in vivo. The present study aimed to investigate the effect of NE on MSCs under high glucose conditions; therefore MSCs were treated with high glucose and NE. High glucose-induced MSCs apoptosis, which was reversed by NE. To verify the effect of NE, mice underwent sympathectomy and were used to establish a diabetic model. Diabetic mice with sympathectomy had a higher apoptosis rate and higher levels of reactive oxygen species in their bone marrow-derived cells than diabetic mice without sympathectomy. High glucose inhibited p-AKT production and B-Cell CLL/Lymphoma 2 expression, and promoted BAX and caspase-3 expression. NE reversed these effects of high glucose. An AKT inhibitor enhanced the effects of high glucose. Thus, NE had a protective effect on MSC apoptosis induced by high glucose, possibly via the AKT/BCL-2 pathway.  相似文献   

8.
9.
SAG (sensitive to apoptosis gene) was cloned as an inducible gene by 1,10-phenanthroline (OP), a redox-sensitive compound and an apoptosis inducer. SAG encodes a novel zinc RING finger protein that consists of 113 amino acids with a calculated molecular mass of 12.6 kDa. SAG is highly conserved during evolution, with identities of 70% between human and Caenorhabditis elegans sequences and 55% between human and yeast sequences. In human tissues, SAG is ubiquitously expressed at high levels in skeletal muscles, heart, and testis. SAG is localized in both the cytoplasm and the nucleus of cells, and its gene was mapped to chromosome 3q22-24. Bacterially expressed and purified human SAG binds to zinc and copper metal ions and prevents lipid peroxidation induced by copper or a free radical generator. When overexpressed in several human cell lines, SAG protects cells from apoptosis induced by redox agents (the metal chelator OP and zinc or copper metal ions). Mechanistically, SAG appears to inhibit and/or delay metal ion-induced cytochrome c release and caspase activation. Thus, SAG is a cellular protective molecule that appears to act as an antioxidant to inhibit apoptosis induced by metal ions and reactive oxygen species.  相似文献   

10.
The modulation of host cell apoptosis by bacterial pathogens is of critical importance for the outcome of the infection process. The capacity of Bartonella henselae and B. quintana to cause vascular tumor formation in immunocompromised patients is linked to the inhibition of vascular endothelial cell (EC) apoptosis. Here, we show that translocation of BepA, a type IV secretion (T4S) substrate, is necessary and sufficient to inhibit EC apoptosis. Ectopic expression in ECs allowed mapping of the anti-apoptotic activity of BepA to the Bep intracellular delivery domain, which, as part of the signal for T4S, is conserved in other T4S substrates. The anti-apoptotic activity appeared to be limited to BepA orthologs of B. henselae and B. quintana and correlated with (i) protein localization to the host cell plasma membrane, (ii) elevated levels of intracellular cyclic adenosine monophosphate (cAMP), and (iii) increased expression of cAMP-responsive genes. The pharmacological elevation of cAMP levels protected ECs from apoptosis, indicating that BepA mediates anti-apoptosis by heightening cAMP levels by a plasma membrane-associated mechanism. Finally, we demonstrate that BepA mediates protection of ECs against apoptosis triggered by cytotoxic T lymphocytes, suggesting a physiological context in which the anti-apoptotic activity of BepA contributes to tumor formation in the chronically infected vascular endothelium.  相似文献   

11.
12.
Endothelial dysfunction is thought to be a major cause of vascular complications in diabetes. Our research shows that ghrelin attenuates high glucose-induced apoptosis in cultured human umbilical vein endothelial cells (ECV-304). Exposure to glucose (33.3mM) for 72 h caused a significant increase in apoptosis, as evaluated by TUNEL and flow cytometry, but pretreatment of ghrelin (10(-7)M) eliminated high glucose-induced apoptosis in ECV-304. Ghrelin also prevented the induction of caspase-3 activation, in cells incubated with glucose (33.3 mM). Exposure of cells to ghrelin (10(-7)M) caused rapid activation of Akt. PI3K inhibitor, LY294002 attenuated ghrelin's inhibitory effect on caspase-3 activity. Ghrelin protected endothelial cells from high glucose by inhibiting reactive oxygen species (ROS) generation. Results of our study indicate that ghrelin inhibits both high glucose-induced apoptosis via PI3K/Akt pathway and ROS production in ECV-304. This peptide may have potential in preventing diabetic complications, especially in obese patients.  相似文献   

13.
14.
15.
It has been reported that alpha-tocopherol, an antioxidant agent, may play a role in preventing diabetic angiopathy. However, there is little evidence to show the effect of alpha-tocopherol on the production of pro-inflammatory cytokines in endothelial cells. Therefore, we examined the effect of alpha-tocopherol on the regulation of IL-8 synthesis induced by high glucose and/or thrombin in endothelial cells. Thrombin alone markedly increased the IL-8 release. Furthermore, high glucose levels and thrombin combined had additive effects on IL-8 synthesis, and alpha-tocopherol diminished their effect; alpha-tocopherol also inhibited the phosphorylation of IkappaB-alpha induced by high glucose levels and/or thrombin. Our results suggest that the administration of alpha-tocopherol to diabetic patients may have a beneficial effect for the prevention of diabetic vascular complications by the inhibition of IL-8 synthesis from endothelial cells.  相似文献   

16.
17.
Ahn HY  Xu Y  Davidge ST 《Life sciences》2008,82(17-18):964-968
Monocyte chemotactic protein-1 (MCP-1) plays a pivotal role in the recruitment of monocytes and thus in the development of inflammatory cardiovascular diseases. Epigallocatechin-3-O-gallate (EGCG), the major catechin derived from green tea, has multiple beneficial effects to reduce cardiovascular disease but the effects of EGCG on vascular endothelial MCP-1 production is not known. In this study, we investigated the mechanisms by which EGCG may inhibit tumor necrosis factor-alpha (TNFalpha)-induced MCP-1 production in bovine coronary artery endothelial cells. TNFalpha increased MCP-1 production in both a concentration and time-dependent manner. Inhibitors of phosphatidylinositol-3-OH kinase (PI-3 kinase), LY294002 and wortmannin, decreased TNFalpha-induced MCP-1 production. EGCG prevented TNFalpha-mediated MCP-1 production and reduced phosphorylation of Akt (Ser473). In addition, EGCG attenuated TNFalpha mediated down-regulation of TNFalpha receptor 1 (TNFR1), but not TNFR2. In conclusion, EGCG inhibited TNFalpha-induced MCP-1 production. Moreover, EGCG inhibited Akt phosphorylation as well as TNF activation of TNFR1, which subsequently resulted in reduced MCP-1 production. These data provide a novel mechanism where the green tea flavonoid, EGCG, could provide direct vascular benefits in inflammatory cardiovascular diseases.  相似文献   

18.
We investigated which PKC isoforms are involved in high glucose-induced protection against hypoxic injury. Treatment for 48 h with high glucose (22 mM) markedly increased the expression of PKC- epsilon in the particulate fraction (213+/-22.1% of the control) but had no effect on other types of PKC isoforms, suggesting that the high glucose-induced increase in PKC expression is isoform-specific. The mRNA level for PKC- epsilon was also substantially increased, reaching its peak after 4h of high glucose treatment. The high glucose increased PKC-epsilon activity in the particulate fraction up to 183+/-32.2% of the control. During hypoxia, the amount of PKC-epsilon in the particulate fraction was remarkably diminished in the low glucose-treated cells, but remained at a higher level in high glucose-treated cells. The treatment with epsilon V1-2 (10 microM), a specific inhibitor of PKC epsilon, abolished the protective effect of high glucose against hypoxia. These results suggest that isoform-specific induction of PKC-epsilon is involved in high glucose-induced protection against hypoxic injury in heart-derived H9c2 cells.  相似文献   

19.
Ethanol induces neuronal cell injury and death by dysregulating several signaling events that are controlled, in part, by activation of MAPK/ERK1/2 and/or inactivation of its corresponding phosphatase, PP1. Recently, we have purified a novel protein of 38 kDa in size, p38SJ, from a callus culture of Hypericum perforatum, which belongs to an emerging DINGG family of proteins with phosphate binding activity. Here, we show that treatment of neuronal cells with p38SJ protects cells against injury induced by exposure to ethanol. Furthermore, pre‐treatment of neuronal cells with p38SJ diminishes the level of the pro‐apoptotic protein Bax and some events associated with apoptosis such as caspase 3 cleavage. In addition, by inducing stress, alcohol can elevate production of reactive oxygen species (ROS) that leads to a decrease in the activity of superoxide dismutase (SOD). Our results showed that p38SJ restores the activity of SOD in the ethanol treated neuronal cells. These observations provide a novel biological tool for developing new approaches for preventing neuronal cell death induced by ethanol and possibly treatment of neurological disorders associated with alcohol abuse. J. Cell. Physiol. 221: 499–504, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Nitric oxide (NO) synthesis is modulated by dimethylarginine dimethylaminohydrolase (DDAH) via metabolizing asymmetric dimethylarginine (ADMA), an endogenous NO synthase (NOS) inhibitor. This study investigated whether glycosylated bovine serum albumin (GBSA) could impair NO synthesis by inhibition of DDAH expression and activity, and whether DDAH2 overexpression could reverse the impaired NO synthesis induced by GBSA in endothelial cells. Overexpression of DDAH2 gene was established by liposome-mediated gene transfection in ECV304 endothelial cell line. Cells were incubated with 1.70 mmol/L GBSA for 48h. And the expressions of DDAH1 and DDAH2, gene activities of DDAH and NOS in cells, as well as concentrations of ADMA and NO in media were assayed. The activity of DDAH and expression of DDAH2 gene but not DDAH1 gene were inhibited in endothelial cells after exposure to GBSA, whereas the concentrations of ADMA were increased concomitantly with the decrease of NOS activity in cells and NO production in media. Overexpression of DDAH2 gene could prevent the inhibition of DDAH activity induced by GBSA (0.55+/-0.02 vs 0.42+/-0.02U/g pro; n=3; P<0.05), decrease ADMA concentration (0.59+/-0.04 vs 1.13+/-0.11 micromol/L; n=3; P<0.01), and increase NOS activity and NO production (53.77+/-3.40 vs 34.59+/-2.57 micromol/L; P<0.05) compared with untransfected cells treated with GBSA. These results suggest that decreased DDAH activity and subsequent elevated endogenous ADMA are implicated in the inhibition of NO synthesis induced by GBSA, and overexpression of DDAH2 gene can prevent these changes in DDAH/ADMA/NOS/NO pathway of endothelial cells exposed to GBSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号