首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamine synthetase isozymes in elasmobranch brain and liver tissues   总被引:1,自引:0,他引:1  
Glutamine synthetase is present as isozymic forms in the elasmobranchs Squalus acanthias (dogfish shark) and Dasyatis sabina (stingray). Subcellular fractionation of elasmobranch brain and liver tissue shows the enzyme to be predominantly cytosolic in the former tissue and mitochondrial in the latter. For the cytosolic brain enzyme, the subunit Mr equals 42,000 in the stingray and 45,000 in the shark, as determined by sodium dodecyl sulfate-gel electrophoresis/Western blotting. The subunit Mr = 45,000 and 47,000, respectively, for stingray and dogfish mitochondrial liver enzymes. Translation of total brain RNA from both species gives immunoprecipitable nascent peptides of the same size as their respective mature enzymes. However, in liver tissue, translation of glutamine synthetase mRNA yields peptides of higher Mr than that of the mature enzymes. In dogfish liver, Mr = 50,000 for the translation product and, in stingray liver, Mr = 48,000. This suggests that the translocation of the enzyme into liver mitochondria may be via a signal or leader sequence mechanism. The larger liver isozyme of elasmobranch glutamine synthetase is found in kidney where it is also known to be mitochondrial. The smaller cytosolic isozyme occurs in retina, heart, gill, and rectal gland tissue as well as in brain.  相似文献   

2.
Testicular angiotensin I-converting enzyme (E.C. 3.4.15.1)   总被引:4,自引:0,他引:4  
P A Velletri 《Life sciences》1985,36(17):1597-1608
In the two mammalian species (i.e., rabbit and rat) in which it has been studied to date, testicular angiotensin I-converting enzyme possesses distinct physicochemical and immunological properties, and a susceptibility to hormonal regulation that makes it a unique isozyme of the converting enzyme ordinarily distributed throughout the body. The testicular isozyme appears to be a lower molecular weight version of the pulmonary enzyme, with similar, although not identical, catalytic properties. The testicular isozyme is under androgenic control and is associated with germinal cells. Although its function has yet to be elaborated, the testicular isozyme provides an excellent model for the study of tissue-specific regulation of carboxypeptidases.  相似文献   

3.
1. The two isozymes of human angiotensin converting enzyme (ACE; EC 3.4.15.1) have recently been cloned and sequenced. 2. The larger, endothelial isozyme has two highly similar internal domains each bearing a putative catalytic site. In contrast the smaller, testicular isozyme has a single catalytic site corresponding to the C-terminal domain of endothelial ACE and represents the ancestral, non-duplicated form of the gene. 3. Both isozymes are anchored in the plasma membrane by a single hydrophobic transmembrane polypeptide located near the C-terminus, and both are extensively N-glycosylated. 4. The testicular isozyme may also be O-glycosylated. 5. The soluble form of ACE in plasma, seminal fluid and other body fluids appears to be derived from the membrane-bound endothelial isozyme by a post-translational modification. 6. ACE has a complex substrate specificity with peptidyl tripeptidase or endopeptidase action on certain peptides, as well as the classical peptidyl dipeptidase activity. 7. Numerous potent inhibitors of the enzyme have been developed and used successfully in the treatment of hypertension, but some of the observed side effects may be due to inhibition of other zinc metalloenzymes. 8. Both endothelial and testicular ACE are highly conserved between species, indicative of the essential role(s) of the enzyme in blood pressure regulation and other physiological processes.  相似文献   

4.
In an attempt to assess the biochemical consequences resulting from structural differences between rat pulmonary and testicular angiotensin-converting enzyme, the thermal stability of crude and purified preparations of each enzyme was compared. Structural heterology was verified by molecular weight determinations and by peptide mapping after limited proteolysis with Staphylococcus V8 proteinase. Thermal stability was monitored by changes in catalytic activity following incubations at 55 degrees C in the presence of chelators and CoCl2. Purified pulmonary angiotensin-converting enzyme was more sensitive to inhibition by the chelators EDTA and 1,10-phenanthroline and by the site-directed inhibitor captopril than was the testicular isozyme. Although the pulmonary holoenzyme was unaffected by cobalt, the testicular holoenzyme was inhibited by cobalt in a concentration-dependent manner. Crude pulmonary angiotensin-converting enzyme was significantly more resistant to thermal denaturation than its crude testicular counterpart. The differences in the thermal lability of each isozyme were still present in purified preparations, although the purified enzymes appeared to be more thermally stable than their crude counterparts. Both chelators and cobalt markedly potentiated the thermal denaturation of each isozyme. These data suggest that the structural heterology of the pulmonary and testicular isozymes may affect the interaction of zinc with the respective enzymes and that zinc may contribute to the structural integrity and thermal stability of angiotensin-converting enzyme in each tissue.  相似文献   

5.
Three different molecular forms of angiotensin converting enzyme (ACE) (approximately Mr 150,000, 80,000 and 40,000, respectively), have been recovered from human cerebrospinal fluid. All three enzymes were inhibited by captopril and enalapril and their activity was potentiated by chloride ions. They were capable of degrading Leu-enkephalin-Arg6 and substance -P, but gave no conversion of neurokinin A. In all these aspects, the CSF enzymes were identical with the human pulmonary enzyme. The Mr 40,000 form of ACE is the smallest active form of the enzyme hitherto reported and is likely to represent a fragment of the C-terminal part of native ACE, where its active center is located.  相似文献   

6.
In an attempt to assess the biochemical consequences resulting from structural differences between rat pulmonary and testicular angiotensin-converting enzyme, the thermal stability of crude and purified preparations of each enzyme was compared. Structural heterology was verified by molecular weight determinations and by peptide mapping after limited proteolysis with Staphylococcus V8 proteinase. Thermal stability was monitored by changes in catalytic activity following incubations at 55°C in the presence of chelators and CoCl2. Purified pulmonary angiotensin-converting enzyme was more sensitive to inhibition by the chelators EDTA and 1,10-phenanthroline and by the site-directed inhibitor captopril than was the testicular isozyme. Although the pulmonary holoenzyme was unaffected by cobalt, the testicular holoenzyme was inhibited by cobalt in a concentration-dependent manner. Crude pulmonary angiotensin-converting enzyme was significantly more resistant to thermal denaturation than its crude testicular counterpart. The differences in the thermal lability of each isozyme were still present in purified preparations, although the purified enzymes appeared to be more thermally stable than their crude counterparts. Both chelators and cobalt markedly potentiated the thermal denaturation of each isozyme. These data suggest that the structural heterology of the pulmonary and testicular isozymes may affect the interaction of zinc with the respective enzymes and that zinc may contribute to the structural integrity and thermal stability of angiotensin-converting enzyme in each tissue.  相似文献   

7.
8.
《Peptides》1988,9(5):945-955
Two endopeptidases displaying similar specificities towards peptide hormone substrates but differing in molecular size have been identified in rabbit heart and isolated by a combination of ion-exchange chromatography, gel filtration and preparative gel electrophoresis. These two enzymes share several properties with the previously described rabbit brain endooligopeptidase A. They were shown to produce, by a single peptide bond cleavage, [Met5] enkephalin and [Leu5]enkephalin from small enkephalin containing peptides. They also hydrolyze the Phe5-Ser5 bond of bradykinin and the Arg8-Arg9 bond of neurotensin. Characteristically, the activity of both low and high Mr enzymes is restricted to oligopeptides. Both forms of heart endooligopeptidase A are inhibited by antibodies raised against the brain enzyme. When electrophoresed in SDS-polyacrylamide gel under denaturing conditions, the low Mr heart enzyme shows a major band of Mr=73,000, comparable in size to the brain enzyme. The SDS-PAGE of the high and low Mr enzymes analyzed by immunoblotting with an antibody raised against low Mr brain endooligopeptidase A, showed a major antigen band corresponding to Mr=72,000. In addition, immunoblotting has also demonstrated that a monoclonal antibody antitubulin reacts with a polypeptide corresponding to Mr=50,000 present in the purified high Mr endooligopeptidase A. Both enzymes are activated by dithiothreitol and inhibited by thiol reagents, but are not affected by leupeptin, DFP or EDTA, thus indicating that they should be classified as nonlysosomal cysteinyl-endooligopeptidase A.  相似文献   

9.
Pig small intestinal mucosal explants, labelled with [35S]-methionine, were fractionated into Mg2+-precipitated (intracellular and basolateral) and microvillar membranes, and the orientation of newly synthesized aminopeptidase N (EC 3.4.11.2) in vesicles from the two fractions was studied by its accessibility to proteolytic cleavage. The mature polypeptide of Mr 166 000 from the latter fraction was cleaved by trypsin, proteinase K and papain, consistent with an extracellular location of the enzyme at its site of function. In contrast, both the mature form and the transient form of Mr 140 000 from the Mg2+-precipitated fraction were equally well protected from proteolytic cleavage (in the absence of Triton X-100). This indicates that the basolateral plasma membrane is unlikely to be involved in the post-Golgi transport of newly synthesized aminopeptidase N and suggests instead a direct delivery of the enzyme to the apical plasma membrane. A crude membrane preparation from labelled explants was used in immunoelectrophoretic purification of membranes to determine at what stage during intracellular transport newly synthesized microvillar enzymes are sorted, i.e., accumulated in areas of the membrane from where other proteins are excluded. The transient form of aminopeptidase N was only moderately enriched by immunopurification, using antibodies against different microvillar enzymes, but the mature form was enriched approximately 30-fold from explants, labelled for 30 min. This suggests that for microvillar enzymes, the aspects of sorting studied take place in, or shortly after exit from, the Golgi complex.  相似文献   

10.
Rat kidney gamma-glutamyl transpeptidase is composed of two nonidentical glycosylated subunits. The enzyme is localized on the lumenal surface of the brush-border membranes of proximal tubule epithelial cells; it is attached to the membranes via an NH2-terminal segment of the larger of the two subunits. Tissue-labeling experiments followed by immunoprecipitation with antibodies directed against the enzyme and its two subunits demonstrate that a glycosylated single chain precursor (Mr = 78,000), containing the elements of both the subunits, is initially synthesized. Pulse-chase studies in the presence of pactamycin, and inhibitor of protein synthesis initiation, indicate that the larger of the two subunits is located at the NH2 terminus of the Mr = 78,000 precursor. The initial events in the biosynthesis and processing of gamma-glutamyl transpeptidase were investigated by in vitro translation of rat kidney mRNA. Such translation results in the synthesis of a Mr = 63,000 unglycosylated polypeptide which has been shown immunologically to contain the domains for both subunits. The Mr = 63,000 species is processed to a Mr = 78,000 core-glycosylated polypeptide when translation of mRNA is carried out in the presence of dog pancreas microsomes. This processing does not appear to be associated with cleavage of an NH2-terminal leader sequence. The Mr = 78,000 polypeptide is integrated into the microsomal membranes with an orientation that is analogous to that found on the brush-border membranes. Glycosylation and membrane integration of transpeptidase are cotranslational events. Upon longer incubation, the Mr = 78,000 species sequestered within the microsomal vesicles is cleaved to species corresponding in size to the two subunits of the kidney enzyme.  相似文献   

11.
A catalytically active Mr 90 000 fragment was generated from native Mr 140 000 human plasma angiotensin-I-converting enzyme after treatment with reagents that induced a perturbation of the native tertiary conformation. Treatment of converting enzyme with 6 M urea produced an aggregation of molecules that was susceptible to proteolysis by either trypsin, chymotrypsin or Staphylococcus aureus V8 proteinase to generate the Mr 90 000 converting enzyme. Also, 1 M ammonium hydroxide, pH 11.3, or 0.01 M sodium hydroxide, pH 11.3, cleaved converting enzyme to the Mr 90 000 fragment. Degradation was not an autocatalytic phenomenon, since it was not prevented by inhibition of converting enzyme with EDTA. The enzymatically mediated, but not the alkaline mediated, cleavage was inhibited by specific converting enzyme inhibitors captopril and Merck L-154,826. This suggests that captopril and Merck L-154,826 can prevent converting-enzyme degradation by preserving a conformation that does not have sites exposed to proteolytic enzymes. This conformation may mimic the native conformation which is quite resistant to serine proteinases.  相似文献   

12.
Antibodies against purified NADP-isocitrate dehydrogenase from pig liver cytosol and pig heart were raised in rabbits. The purified enzymes from these sources are different proteins, as demonstrated by differences in electrophoretic mobility and absence of crossreactivity by immunotitration and immunodiffusion. The NADP-isocitrate dehydrogenase in the soluble supernatant homogenate fraction from pig liver, kidney cortex, brain and erythrocyte hemolyzate was identical with the purified enzyme from pig liver cytosol, as determined by electrophoretic mobility and immunological techniques. The enzyme in extracts of mitochondria from pig heart, kidney, liver and brain was identical with the purified pig heart enzyme by the same criteria. However, the 'mitochondrial' isozyme was the major component also in the soluble supernatant fraction of pig heart homogenate. The 'cytosolic' isozyme accounted for only 1-2% of total NADP-isocitrate dehydrogenase in pig heart, as determined by separation of the isozymes with agarose gel electrophoresis and immunotitration. The mitochondrial isozyme was also the predominant NADP-isocitrate dehydrogenase in porcine skeletal muscle. The ratio of cytosolic/mitochondrial isozyme for porcine whole tissue extract, determined by immunotitration, was about 2 for liver and 1 for kidney cortex and brain. The distribution of isozymes in cell homogenate fractions from ox and rat tissues corresponded to that observed in organs of porcine origin. The mitochondrial and cytosolic isozymes from ox and rat tissues exhibited crossreactivity with the antibodies against the pig heart and pig liver cytosol enzyme, respectively, and the electrophoretic migration patterns were similar qualitatively to those found for the isozymes in porcine tissues. Nevertheless, there were species specific differences in the characteristics of each of the corresponding isozymes. NAD-isocitrate dehydrogenase was not inhibited by the antibodies, confirming that the protein is distinct from that of either isozyme of NADP-isocitrate dehydrogenase.  相似文献   

13.
1. Elastin was isolated from the bulbus arteriosus of a salmonid fish. Monoclonal and polyclonal antibodies, elicited against a CNBr digest of this protein, immunoprecipitated a polypeptide of Mr 43,000 from fish cell culture medium. 2. Cell-free translation of salmon poly A+ RNA produced a protein of approximately 43 kD that was immunoprecipitated with anti-elastin antibodies. The corresponding mRNA had an approximate Mr of 2 kb. 3. Despite similarities in amino acid composition, the differences in Mr between mammalian and salmon mRNA and protein suggest a divergence of fish and higher vertebrate elastins from an earlier ancestral gene.  相似文献   

14.
During lung development type II alveolar epithelial cells produce extracellular pulmonary surfactant. Polyclonal antibodies were produced against nonserum proteins associated with human surfactant. The present studies were designed (i) to determine if mouse surfactant proteins were antigenically cross-reactive with polyclonal antibodies directed against human surfactant proteins; and (ii) to determine surfactant protein localization during fetal, neonatal, and adult mouse lung development. Two-dimensional gel electrophoresis studies in conjunction with immunologic techniques provided evidence that mouse and human surfactant proteins shared antigenic determinants. The major monomeric form of mouse surfactant protein in a glycoprotein of approximately Mr 35,000 under reducing conditions. A less abundant form was identified as a Mr 45,000 polypeptide. Immunohistochemical localization showed that type II cells contain surfactant protein at Theiler stage 26. A gradient of immunostaining was localized within alveolar surfaces. The antigen was not detected in heart, blood vessels, or pulmonary interstitial cells. Surfactant protein was detected lining alveolar surfaces in mature adult lung. The distribution of this protein during fetal and neonatal lung morphogenesis suggests that this extracellular constituent of pulmonary surfactant may be extremely useful as a phenotypic marker with which to evaluate normal and abnormal lung development.  相似文献   

15.
Four monoclonal antibodies have been raised against voltage-sensitive Ca2+ channel dihydropyridine receptors from rabbit skeletal muscle. When tested by immunoblot assay of denatured transverse tubule membranes in reducing polyacrylamide gels, each recognised a single polypeptide of Mr approximately 140,000 that co-migrated with the large glycoprotein subunit of the purified receptor. In blots of nonreducing gels, a larger protein of Mr approximately 170,000 was seen and three of the antibodies recognised additional components at Mr approximately 310,000 and approximately 330,000. Crossreactive material of similar molecular mass was also seen in rabbit heart and brain, and in the skeletal muscle of other species.  相似文献   

16.
Biosynthesis of the human asialoglycoprotein receptor   总被引:24,自引:0,他引:24  
The asialoglycoprotein receptor (ASGP-R) isolated from human liver is a single polypeptide of Mr = 46,000. Monospecific polyclonal anti-human ASGP-R antibodies as well as anti-rat ASGP-R antibodies specifically inhibit binding of 125I-asialoorosomucoid to human hepatoma Hep G2 ASGP-R. These anti-ASGP-R antibodies specifically immunoprecipitate the 46,000-Da polypeptide from hepatoma cells labeled biosynthetically with 35S-amino acid. The receptor is initially synthesized as a 40,000-Da precursor which is converted to the mature 46,000-Da species with a t1/2 of approximately 45 min. The precursor species is sensitive to endo-beta-N-acetylglucosaminidase H and becomes resistant coincident with the appearance of the mature 46,000-Da receptor. In addition, the receptor synthesized in the presence of tunicamycin is approximately 34,000 Da. The newly synthesized ASGP-R reaches the cell surface after 45-60 min, where only the mature 46,000-Da species is present. In Hep G2 cells, the ASGP-R has a mean lifetime of approximately 30 h, a value which is unaltered during maximal rates of receptor-mediated endocytosis of ASGP.  相似文献   

17.
Two molecular weight (Mr) forms of angiotensin-converting enzyme are present in human testis. Both the high Mr 140,000 form and the low Mr 90,000 form are catalytically similar but immunologically distinct. After isoelectric focusing, the profile of sialylated Mr 140,000 isozymes resembled that of seminal plasma converting enzyme, whereas the nonsialylated Mr 90,000 isozymes were distinct. These data suggest that the Mr 140,000 testicular converting enzyme may be a source of converting enzyme in seminal plasma.  相似文献   

18.
gamma-Glutamyl transpeptidase consists of two polypeptide chains anchored to the kidney brush-border membrane only through a short hydrophobic domain near the NH2-terminal end of the heavy subunit. The two subunits were reported to derive from a single polypeptide precursor by tissue labeling experiments. We have investigated the first steps of GGT biosynthesis and processing in a cell-free system. mRNA was prepared from kidney and enriched in specific sequences by a preparative gel electrophoresis. In vitro translation resulted in the synthesis of a single polypeptide (Mr = 63,000) specifically immunoprecipitated by antibodies raised against the mature dimeric enzyme. Incubation with microsomal membranes resulted in the appearance of a glycosylated form of the propeptide (Mr = 78,000). This latter form was cotranslationally segregated into microsomes and was sensitive to endoglycosidase H. Purified Escherichia coli leader peptidase did not process the primary gamma-glutamyl transpeptidase chain. This ectoprotein therefore appears to be inserted in the phospholipid bilayer without cleavage of a signal peptide, similar to most integral membrane proteins so far studied.  相似文献   

19.
Yeast-mitochondrial methionyl-tRNA synthetase was purified 1060-fold from mitochondrial matrix proteins of Saccharomyces cerevisiae using a four-step procedure based on affinity chromatography (heparin-Ultrogel, tRNA(Met)-Sepharose, Agarose-hexyl-AMP) to yield to a single polypeptide of high specific activity (1800 U/mg). Like the cytoplasmic methionyl-tRNA synthetase (Mr 85,000), the mitochondrial isoenzyme is a monomer, but of significantly smaller polypeptide size (Mr 65,000). In contrast, the corresponding enzyme of Escherichia coli is a dimer (Mr 152,000) made up of identical subunits. The measured affinity constants of the purified mitochondrial enzyme for methionine and tRNA(Met) are similar to those of the cytoplasmic isoenzyme. However, the two yeast enzymes exhibit clearly different patterns of aminoacylation of heterologous yeast and E. coli tRNA(Met). Furthermore, polyclonal antibodies raised against the two proteins did not show any cross-reactivity by inhibition of enzymatic activity and by the highly sensitive immunoblotting technique, indicating that the two enzymes share little, if any, common antigenic determinants. Taken together, our results further support the belief that the yeast mitochondrial and cytoplasmic methionyl-tRNA synthetases are different proteins coded for by two distinct nuclear genes. Like the yeast cytoplasmic aminoacyl-tRNA synthetases, the mitochondrial enzymes displayed affinity for immobilized heparin. This distinguishes them from the corresponding enzymes of E. coli. Such an unexpected property of the mitochondrial enzymes suggests that they have acquired during evolution a domain for binding to negatively charged cellular components.  相似文献   

20.
This study describes 11 monoclonal antibodies (Mabs) against human fibroblast collagenase that (i) inhibit the specific catalytic activity of the enzyme and/or (ii) react with one or more forms of the enzyme on Western blots. Each of the Mabs specifically immunoprecipitated the Mr 57,000/52,000 procollagenase from [35S]methionine-labeled culture medium. Five Mabs, designated VI-3, VI-4, 2C5, 4A2, and 7C2, inhibited the activity of fibroblast-type collagenase against soluble monomeric collagen and against reconstituted collagen fibrils but did not inhibit the genetically distinct human PMN leukocyte collagenase. The interstitial collagenase produced by human mucosal keratinocytes (SCC-25) was also inhibited, whereas the corresponding enzyme from rat was not. Assignment of epitopes to structural domains within the molecule based on immunoperoxidase staining of Western blots of collagenase and its autocatalytic fragments revealed that 9 of 11 epitopes, including those recognized by 4 inhibitory Mabs, were clustered in a 169-residue domain, which constitutes the NH2-terminal part of the Mr 46,000/42,000 active enzyme. One Mab (X-2a) specifically recognized the Mr 57,000/52,000 zymogen species and failed to react with the active Mr 46,000/42,000 form. The inhibitory Mab VI-3 was used for immunoaffinity purification of procollagenase from culture media with a recovery better than 80% and a yield of approximately 1.4 mg of enzyme/L of medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号