首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Data are reported for T(m), the temperature midpoint of the thermal unfolding curve, of ribonuclease A, versus pH (range 2-9) and salt concentration (range 0-1 M) for two salts, Na(2)SO(4) and NaCl. The results show stabilization by sulfate via anion-specific binding in the concentration range 0-0.1 M and via the Hofmeister effect in the concentration range 0.1-1.0 M. The increase in T(m) caused by anion binding at 0.1 M sulfate is 20 degrees at pH 2 but only 1 degree at pH 9, where the net proton charge on the protein is near 0. The 10 degrees increase in T(m) between 0.1 and 1.0 M Na(2)SO(4), caused by the Hofmeister effect, is independent of pH. A striking property of the NaCl results is the absence of any significant stabilization by 0.1 M NaCl, which indicates that any Debye screening is small. pH-dependent stabilization is produced by 1 M NaCl: the increase in T(m) between 0 and 1.0 M is 14 degrees at pH 2 but only 1 degree at pH 9. The 14 degree increase at pH 2 may result from anion binding or from both binding and Debye screening. Taken together, the results for Na(2)SO(4) and NaCl show that native ribonuclease A is stabilized at low pH in the same manner as molten globule forms of cytochrome c and apomyoglobin, which are stabilized at low pH by low concentrations of sulfate but only by high concentrations of chloride.  相似文献   

2.
Laurents DV  Scholtz JM  Rico M  Pace CN  Bruix M 《Biochemistry》2005,44(21):7644-7655
The conformational stability of ribonuclease Sa (RNase Sa) has been measured at the per-residue level by NMR-monitored hydrogen exchange at pH* 5.5 and 30 degrees C. In these conditions, the exchange mechanism was found to be EXII. The conformational stability calculated from the slowest exchanging amide groups was found to be 8.8 kcal/mol, in close agreement with values determined by spectroscopic methods. RNase Sa is curiously rich in acidic residues (pI = 3.5) with most basic residues being concentrated in the active-site cleft. The effects of dissolved salts on the stability of RNase Sa was studied by thermal denaturation experiments in NaCl and GdmCl and by comparing hydrogen exchange rates in 0.25 M NaCl to water. The protein was found to be stabilized by salt, with the magnitude of the stabilization being influenced by the solvent exposure and local charge environment at individual amide groups. Amide hydrogen exchange was also measured in 0.25, 0.50, 0.75, and 1.00 M GdmCl to characterize the unfolding events that permit exchange. In contrast to other microbial ribonucleases studied to date, the most protected, globally exchanging amides in RNase Sa lie not chiefly in the central beta strands but in the 3/10 helix and an exterior beta strand. These structural elements are near the Cys7-Cys96 disulfide bond.  相似文献   

3.
The effects of different salts (LiCl, NaCl, ChoCl, KF, KCl, and KBr) on the structural stability of a 33-residue peptide corresponding to the leucine zipper region of GCN4 have been studied by high-sensitivity differential scanning calorimetry. These experiments have allowed an estimation of the salt dependence of the thermodynamic parameters that define the stability of the coiled coil. Independent of the nature of the salt, a destabilization of the coiled coil is always observed upon increasing salt concentration up to a maximum of approximately 0.5 M, depending on the specific cation or anion. At higher salt concentrations, this effect is reversed and a stabilization of the leucine zipper is observed. The effect of salt concentration is primarily entropic, judging from the lack of a significant salt dependence of the transition enthalpy. The salt dependence of the stability of the peptide is complex, suggesting the presence of specific salt effects at high salt concentrations in addition to the nonspecific electrostatic effects that are prevalent at lower salt concentrations. The data is consistent with the existence of specific interactions between anions and peptide with an affinity that follows a reverse size order (F- > Cl- > Br-). Under all conditions studied, the coiled coil undergoes reversible thermal unfolding that can be well represented by a reaction of the form N2<==>2U, indicating that the unfolding is a two-state process in which the helices are only stable when they are in the coiled coil conformation.  相似文献   

4.
Akhtar MS  Ahmad A  Bhakuni V 《Biochemistry》2002,41(11):3819-3827
We have carried out a systematic study on the guanidinium chloride- and urea-induced unfolding of glucose oxidase from Aspergillus niger, an acidic dimeric enzyme, using various optical spectroscopic techniques, enzymatic activity measurements, glutaraldehyde cross-linking, and differential scanning calorimetry. The urea-induced unfolding of GOD was a two-state process with dissociation and unfolding of the native dimeric enzyme molecule occurring in a single step. On the contrary, the GdmCl-induced unfolding of GOD was a multiphasic process with stabilization of a conformation more compact than the native enzyme at low GdmCl concentrations and dissociation along with unfolding of enzyme at higher concentrations of GdmCl. The GdmCl-stabilized compact dimeric intermediate of GOD showed an enhanced stability against thermal and urea denaturation as compared to the native GOD dimer. Comparative studies on GOD using GdmCl and NaCl demonstrated that binding of the Gdm(+) cation to the enzyme results in stabilization of the compact dimeric intermediate of the enzyme at low GdmCl concentrations. An interesting observation was that a slight difference in the concentration of urea and GdmCl associated with the unfolding of GOD was observed, which is in violation of the 2-fold rule for urea and GdmCl denaturation of proteins. This is the first report where violation of the 2-fold rule has been observed for a multimeric protein.  相似文献   

5.
The thermostability of serum albumin and beta-lactoglobulin in various salt solutions was studied using differential scanning calorimetry. Below 1.0 M salt concentrations, the relative effectiveness of various sodium salts on increasing the thermostability of beta-lactoglobulin followed the classic Hofmeister or lyotropic series, i.e. SO2-(4) greater than Cl- greater than Br- greater than ClO-4 greater than SCN-; however, in the case of serum albumin the above order was reversed, i.e. ClO-4 greater than SCN- greater than Br- greater than Cl- greater than SO2-(4), indicating that the thermostability of serum albumin was higher in chaotropic solution conditions. Circular dichroic analysis of serum albumin in NaClO4 solutions revealed that the alpha-helical content of the protein increased from 59% to 73% in 1.0 M NaClO4; no similar increase in secondary structure was observed for beta-lactoglobulin. These observations contradicted the general notion that the chaotropic effect of neutral salts on the stability of macromolecules is independent of any details of the macromolecular conformation itself. The results presented here indicate that the predisposition of the native conformation of a protein per se might affect whether the protein would undergo stabilization or destabilization (i.e. conformational adaptability) under moderate chaotropic solution conditions.  相似文献   

6.
The unfolding of shikimate kinase (SK) from Erwinia chrysanthemi by urea and its subsequent refolding on dilution of the denaturing agent has been studied in detail [Eur. J. Biochem. 269 (2002) 2124]. Comparison of the effects of urea on the enzyme with those of guanidinium chloride (GdmCl) and NaCl indicated that chloride ions significantly weakened the binding of shikimate. This finding prompted a more detailed examination of the effects of salts on the structure, function and stability of the enzyme; the effects of NaCl and Na(2)SO(4) were investigated in detail. These salts have very small effects on the secondary structure as judged by far UV CD circular dichroism (CD), although the near UV CD spectra suggest that some limited changes in the environment of aromatic amino acids may occur. Both salts inhibit SK activity and analysis of the kinetic and substrate binding parameters point to a complex mechanism for the inhibition. Inclusion of salts leads to a marked stabilisation against unfolding of the enzyme by urea. When the enzyme is unfolded by incubation in 4 M urea, addition of NaCl or Na(2)SO(4) leads to a relatively slow refolding of the enzyme as judged by the regain of native-like CD and fluorescence. In addition, the refolded enzyme can bind shikimate, though more weakly than the native enzyme. However, the refolded enzyme does not appear to be capable of binding nucleotides, nor does it possess detectable catalytic activity. The refolding process brought about by addition of salt in the presence of 4 M urea is not associated with any change in the fluorescence of the probe 8-anilino-1-naphthalenesulfonic acid (ANS), indicating that an intermediate formed by hydrophobic collapse is unlikely to be significantly populated. The results point to both specific and general effects of salts on SK. These are discussed in the light of the structural information available on the enzyme.  相似文献   

7.
Biopreservation processes such as freezing and drying inherently introduce heterogeneity. We focused on exploring the mechanisms responsible for heterogeneity in isothermal, diffusively dried biopreservation solutions that contain a model protein. The biopreservation solutions used contained trehalose (a sugar known for its stabilization effect) and salts (LiCl, NaCl, MgCl2, and CaCl2). Performing Fourier transform infrared spectroscopy analysis on the desiccated droplets, spatial distributions of the components within the dried droplet, as well as their specific interactions, were investigated. It was established that the formation of multiple thermodynamic states was induced by the spatial variations in the cosolute concentration gradients, directly affecting the final structure of the preserved protein. The spatial distribution gradients were formed by two competing flows that formed within the drying droplet: a dominant peripheral flow, induced by contact line pinning, and the Marangoni flow, induced by surface tension gradients. It was found that the changes in cosolute concentrations and drying conditions affected the spatial heterogeneity and stability of the product. It was also found that trehalose and salts had a synergistic stabilizing effect on the protein structure, which originated from destructuring of the vicinal water, which in turn mediated the interactions of trehalose with the protein. This interaction was observed by the change in the glycosidic CO, and the CH stretch vibrations of the trehalose molecule.  相似文献   

8.
Chemical denaturants are frequently used to unfold proteins and to characterize mechanisms and transition states of protein folding reactions. The molecular basis of the effect of urea and guanidinium chloride (GdmCl) on polypeptide chains is still not well understood. Models for denaturant--protein interaction include both direct binding and indirect changes in solvent properties. Here we report studies on the effect of urea and GdmCl on the rate constants (k(c)) of end-to-end diffusion in unstructured poly(glycine-serine) chains of different length. Urea and GdmCl both lead to a linear decrease of lnk(c) with denaturant concentration, as observed for the rate constants for protein folding. This suggests that the effect of denaturants on chain dynamics significantly contributes to the denaturant-dependence of folding rate constants for small proteins. We show that this linear dependency is the result of two additive non-linear effects, namely increased solvent viscosity and denaturant binding. The contribution from denaturant binding can be quantitatively described by Schellman's weak binding model with binding constants (K) of 0.62(+/-0.01)M(-1) for GdmCl and 0.26(+/-0.01)M(-1) for urea. In our model peptides the number of binding sites and the effect of a bound denaturant molecule on chain dynamics is identical for urea and GdmCl. The results further identify the polypeptide backbone as the major denaturant binding site and give an upper limit of a few nanoseconds for residence times of denaturant molecules on the polypeptide chain.  相似文献   

9.
Understanding the molecular basis for protein denaturation by urea and guanidinium chloride (GdmCl) should accommodate the observation that, on a molar basis, GdmCl is generally 2-2.5-fold more effective as a protein denaturant than urea. Previous studies [Smith, J. S., and Scholtz, J. M. (1996) Biochemistry 35, 7292-7297] have suggested that the effects of GdmCl on the stability of alanine-based helical peptides can be separated into denaturant and salt effects, since adding equimolar NaCl to urea enhanced urea-induced unfolding to an extent that was close to that of Gdm. We reinvestigated this observation using an alanine-based helical peptide (alahel) that lacks side chain electrostatic contributions to stability, and compared the relative denaturant sensitivities of this peptide with that of tryptophan zipper peptides (trpzip) whose native conformations are stabilized largely by cross-strand indole ring interactions. In contrast to the observations of Smith and Scholtz, GdmCl was only slightly more powerful as a denaturant of alahel than urea in salt-free buffer (the denaturant m value m(GdmCl)/m(urea) ratio = 1.4), and the denaturation of alahel by urea exhibited only a small dependence on NaCl or KCl. The trpzip peptides were much more sensitive to GdmCl than to urea (m(GdmCl)/m(urea) = 3.5-4). These observations indicate that the m(GdmCl)/m(urea) ratio of 2-2.5 for proteins results from a combination of effects on the multiple contributions to protein stability, for which GdmCl may be only slightly more effective than urea (e.g., hydrogen bonds) or considerably more effective than urea (e.g., indole-indole interactions).  相似文献   

10.
1. The hemoglobin of the pond snail, Planorbella duryi has a molecular weight of 1.64 x 10(6) to 1.77 x 10(6) as determined by light-scattering at 630 nm and a sedimentation coefficient of 36 S. 2. The analysis of the circular dichroism spectrum obtained in the 190-250 nm region suggests a high degree of helical folding of the polypeptide chains of P. duryi hemoglobin analogous to human hemoglobin and myoglobin, with estimates of alpha-helical folding of about 60-65%, 0-5% beta-structure, and the remaining portion of the chains in unordered form. 3. The dissociated subunits in 6.0 M GdmCl, in the absence and in the presence of reducing reagent (0.1 M dithiothreitol), have a molecular weight of 3.73 +/- 0.23 x 10(5) and 1.93 +/- 0.04 x 10(5), suggesting a di-decameric assembly of the parent hemoglobin organized in the form of five dimers held together by disulfide-linkages. 4. The native hemoglobin is strongly resistant to both pH dissociation and dissociation by urea and such salts as NaCl and NaClO4. Dissociation and denaturation could only be effected in concentrated GdmCl solutions. 5. The influence of the various dissociating agents on the quaternary structure suggest ionic stabilization of the decameric assembly, which is stabilized by salt bridges between the subunits.  相似文献   

11.
The balance between stabilizing forces and the localized electrostatic repulsions destabilizing the transthyretin (TTR) tetramer is tunable via anion shielding. The two symmetrical anion interaction sites in TTR are comprised of residues Lys15 and Lys15' from opposing subunits on the periphery of the two thyroxine binding sites. These epsilon-ammonium groups repel one another and destabilize the tetramer, unless an appropriate anion is present, which stabilizes the tetramer. Chaotrope denaturation of TTR exhibits unusual behavior in that urea appears to be a stronger denaturant than GdmCl (guanidinium chloride), even though GdmCl is typically twice as powerful as a denaturant. The shift in the midpoint of the urea denaturation curve to higher concentrations as well as the increase in the mole fraction of tetramer that is highly resistant to denaturation with increasing KCl concentration provides strong evidence that anion shielding stabilizes the TTR tetramer. A consequence of tetramer stabilization is folding hysteresis, because the high GdmCl concentrations required to denature the anion-stabilized tetramer do not allow refolding of the unfolded monomers. The formation of amyloid fibrils by TTR requires that its normal tetrameric structure dissociate to alternatively folded monomers, a process mediated by acidification (pH 5-4). This process is inhibited by Cl(-) ions in a concentration-dependent fashion. Chloride ion may not be the relevant physiological TTR stability modulator, but it is the main focus of these studies explaining the hysteresis observed in the denaturation and refolding studies with GdmCl.  相似文献   

12.
alpha-Amylase from mung beans (Vigna radiata) being one of the few plant alpha-amylases purified so far was studied with respect to its conformational stability by CD and fluorescence spectroscopy. The enzyme was shown to bind 3-4 Ca(2+) ions, which all are important for its activity. In contrast to other alpha-amylases no inhibition was observed at high Ca(2+) concentrations (100 mM). Depletion of calcium decreased the transition temperature from 87 to 48 degrees C. Kinetic stopped-flow fluorescence measurements allowed detecting two unfolding phases at >6 M GdmCl, whereas only one phase was observed at <5 M GdmCl. These results suggest that the first (reversible) step of unfolding is slower than the second (irreversible) step at low GdmCl concentrations, whereas the rates of these two steps are opposite at high GdmCl concentrations.  相似文献   

13.
Thermodynamic, circular dichroism (CD), and activity measurements have been used to characterize the different conformational states and the effects of NaCl concentrations (0.0-3.0 M) on thermal unfolding of ornithine carbamoyltransferase (OCT) from Alopias vulpinus. Furthermore conformational changes in whole enzyme structure have been monitored by titration of SH-groups. OCT unfolding process follows an irreversible two-state mechanism with a first-order kinetic of denaturation, without breaking-point. NaCl shows very little stabilization effects at low concentration and its action become very important over 1.5 M concentration. The presence of 3.0 M NaCl completely avoids OCT unfolding at 60, 64 and 66 degrees C. Kinetic and thermodynamic parameters are strongly influenced by the presence of high NaCl concentration. Our experiments showed that NaCl stabilization process involved changes in preferential binding, in electrostatic and van der Waals interactions and exposure of buried site and SH-groups. During thermal denaturation, UV-vis and CD spectroscopy show that high salts concentration preserves OCT activity, avoiding exposure of hydrophobic site and destruction of secondary and tertiary structure elements.  相似文献   

14.
Sodium chloride stimulated respiration of Anacystis nidulans.   总被引:2,自引:0,他引:2  
With certain salts a stimulation of respiration of the blue-green alga Anacystis nidulans was found in the dark. The stimulation was observed only at high concentrations (10(-2)M--10(-1)M). NaCl or LiCl are the most effective salts and on addition the increase of the respiration is about 2.5fold. Li is assumed to function as a substitute for Na. Potassium salts, except KCl, are ineffective. The order for the effectiveness is: NaCl greater than NaNO3, Na2SO4 greater than KCl greater than KNO3, K2SO4 (=zero). Accordingly, the cation Na+, and to a less degree the anion Cl- are responsible for the stimulatory effect. K, which is ineffective, is passively accumulated by Anacystis according to the membrane potential. Na is actively extruded. At 0.1 M external NaCl, the passive influx of Na is high, but even then it is balanced by an active efflux. This increases the energy consumption of the cells and leads to a stimulated respiration. With DCCD (N,N'-dicyclohexylcarbodiimide) or NEM (N-ethylmaleimide), the Na efflux is inhibited, simultaneously the stimulation of respiration is abolished and the passive influx of Na becomes detectable. At 0.1 M NaCl, the passive influx of Na measured in presence of DCCD is 5 x 10(-6) moles Na/min and ml packed cells. In absence of DCCD on addition of 0.1 M NaCl the extra oxygen consumption is 2 x 10(-6) moles O2/min and ml cells. This may prove that the stimulation of respiration is mainly caused by the active Na extrusion.  相似文献   

15.
Repeated freezing and thawing, the addition of salts, and elevated temperatures all promote the inactivation of the rat hepatic Ah receptor. The reduced availability of bulk water to solvate the protein is proposed to be the factor linking all these routes for inactivation. Prospective protocols for purification of unliganded Ah receptor should therefore minimize the number of freeze/thaw cycles; long-term freezing of cytosolic samples at -20 degrees C is inadequate to maintain long-term viability of the unliganded receptor. The stability of rat hepatic receptor is greatly increased upon binding the ligand, and the extent of ligand-induced stabilization is much greater than what is observed with steroid hormone receptors. Concentrations of NaCl and K2HPO4 up to 0.5 M inactivate the unbound Ah receptor irreversibly, with the loss of approximately 50% of the specific binding. At 2.0 M NaCl, a further reversible reduction in ligand binding activity is observed. The results at lower salt concentrations are interpreted in terms of the irreversible dissociation of a single binding unit from the trimeric cytosolic Ah receptor (which consists of two ligand-binding units and a 90-kDa heat shock protein), with the release of bound ligand from that subunit.  相似文献   

16.
Globular proteins may be stabilized, either intrinsically, at the various levels of the structural hierarchy, or extrinsically, by ligand binding. In the case of the dormant all-beta protein spherulin 3a (S3a) from the slime mold Physarum polycephalum, binding of calcium ions causes extreme kinetic and thermodynamic stabilization. S3a is the only known single-domain member of the two Greek key superfamily of betagamma-crystallins sharing the extreme long-term stability of its homologs in vertebrate eye lens. Spectral analysis allows two Ca2+-binding sites with KD=9 microM and 200 microM to be distinguished. Unfolding in the absence and in the presence of Ca2+gives evidence for extreme kinetic stabilization of the protein: In the absence of Ca2+, the half-time of unfolding in 2. 5 M guanidinium chloride (GdmCl) equals 8.3 minutes, whereas in the presence of Ca2+, even in 7.5 M GdmCl, it exceeds nine hours. To reach the equilibrium of unfolding in the absence and in the presence of Ca2+takes one day and eight weeks, respectively. The corresponding Gibbs free energies (based on the two-state model) are 77 and 135 kJ/mol. Saturation of S3a with Ca2+leads to an upward shift of the temperature-induced equilibrium transition by ca 20 deg. C. The in situ Ca2+concentration in the spherules is sufficient for the complete complexation of S3a in vivo.  相似文献   

17.
The effect of trehalose on folding and stability of the small ribosomal protein S6 was studied. Non-disruptive point mutations distributed along the protein structure were analyzed to characterize the stabilizing effect of trehalose and map the folding pathway of S6. On average, the stability of the wild-type and S6 mutants increases by 3 kcal/mol M trehalose. Despite the non-specific thermodynamic stabilization mechanism, trehalose particularly stabilizes the less destabilized mutants. Folding/unfolding kinetics shows clearly that trehalose induces the collapse of the unfolded state to an off-pathway intermediate with non-native diffuse contacts. This state is similar to the collapsed state induced by high concentrations of stabilizing salts, as previously reported. Although it leads to the accumulation of this off-pathway intermediate, trehalose does not change the compactness of the transition state ensemble. Furthermore, the productive folding pathway of S6 is not affected by trehalose as shown by a Phi-value analysis. The unfolded state ensemble of S6 should be more compact in the presence of trehalose and therefore destabilized due to decreased conformational entropy. Increased compaction of the unfolded state ensemble might also occur for more stable mutants of S6, thus explaining the synergistic effect of trehalose and point mutations on protein stabilization.  相似文献   

18.
From earlier studies it is known that bovine serum albumin has one high affinity binding site and several lower affinity sites for the sulfa drug N1-(5-ethyl-1,3,4-thiadiazol-2-yl)sulfanilamide (sulfaethidole) (Kostenbauder, H.B., Jawad, M.J., Perrin, J.H., and Averhart, V. (1971) J. Pharm. Sci. 60, 1658-1660). This binding has been further studied using equilibrium dialysis, microcalorimetry, and pH titration technique. Results of these studies show that the binding of sulfaethidole to the first (high affinity) site may be accompanied by an uptake of protons. Proton uptake is found to be zero at pH 7.4 and approximately 0.6 at pH 8.5 for each sulfaethidole molecule bound. The other binding sites for sulfaethidole are not proton linked. The first, and probably the other binding sites, are also Cl- ion linked; for example, the binding of sulfaethidole to the first binding site is accompanied by the displacement of (on average) one Cl- ion at pH 7.4 in 0.1 M NaCl. This explains the observation that the heat of binding of sulfaethidole to the high affinity site is -33.0 kJ.mol-1 in the absence of chloride ions, but only -22.8 kJ.mol-1 in the presence of 0.1 M Cl- (at pH 7.4).  相似文献   

19.
T Arakawa  S N Timasheff 《Biochemistry》1984,23(25):5912-5923
The preferential interactions of proteins with solvent components were studied in concentrated aqueous solutions of the sulfate, acetate, and chloride salts of Mg2+, Ba2+, Ca2+, Mn2+ and Ni2+ [except for CaSO4, BaSO4, Mn-(OAc)2, and Ni(OAc)2], and results were compared with those of the Na+ salts. It was found that, for all the salts, the preferential hydration increased in the order of Cl- less than CH3-COO- less than SO42- regardless of the cationic species used, in agreement with the anionic lyotropic series, and that the same parameter exhibited a tendency to increase in the order of Mn2+, Ni2+ less than Ca2+, Ba2+ less than Mg2+ less than Na+. The salting-out and stabilizing or salting-in and destabilizing effectiveness of the salts were interpreted in terms of the observed preferential interactions. The surface tension increment of salts, which is a major factor responsible for the preferential interactions of the Na+ salts, had no correlation with those of the divalent cation salts. It was shown that the binding of divalent cations to the proteins overcomes the salt exclusion due to the surface tension increase, leading to a decrease in the preferential hydration. In conformity with this mechanism, the preferential interaction of MgCl2 was strongly pH dependent, because of the protein charge-dependent affinity of Mg2+ for proteins, while NaCl showed no pH dependence of the preferential interaction. The proposed mechanism was supported by a strong correlation between the preferential interaction results and the interaction of these salts with the model peptide compound acetyltetraglycine ethyl ester, described by Robinson and Jencks.  相似文献   

20.
The growth rate of Chromohalobacter salexigens DSM 3043 can be stimulated in media containing 0.3 M NaCl by a 0.7 M concentration of other salts of Na+, K+, Rb+, or NH4+, Cl-, Br-, NO3-, or SO4(2-) ions. To our knowledge, growth rate stimulation by a general high ion concentration has not been reported for any organism previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号