首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Masuda S  Hasegawa K  Ono TA 《FEBS letters》2005,579(20):4329-4332
A sensor of blue light using FAD (BLUF) protein is a flavin adenine dinucleotide (FAD) based new class blue-light sensory flavoprotein. The BLUF domain of AppA was reconstituted in vitro from apoprotein and flavin adenine dinucleotide, flavin adenine mononucleotide or riboflavin. The light-induced FTIR spectra of the domain reconstituted from various flavins and the 13C-labeled apoprotein showed that identical light-induced structural changes occur in both the flavin chromophore and protein for the signaling state in all of the reconstituted holoproteins. The results showed that an adenosine 5'-dinucleotide moiety is not required for signaling-state formation in a BLUF domain.  相似文献   

2.
AppA is a member of an FAD-based new class blue-light sensory protein known as sensor of blue light using FAD (BLUF) protein. The spectroscopic properties of an AppA BLUF domain (AppA126), in which the tryptophan residue at position 104 had been replaced with alanine (W104A), were characterized. The W104A mutant AppA126 showed a nearly normal absorption red shift in the FAD UV-visible absorption upon illumination; however, the light state relaxed to the dark state at a rate approximately 150 times faster than that of wild-type AppA126. Light-induced structural changes of FAD and apoprotein in the wild-type and mutant AppA126 were studied by means of light-induced Fourier transform infrared (FTIR) difference spectroscopy using AppA126, in which the apoprotein had been selectively labeled with 13C. The light-induced FTIR spectrum of the W104A mutant AppA126 revealed bands corresponding to a C4 = O stretch of the FAD isoalloxazine ring and structural changes of apoprotein, but with some alterations in the bands' features. Notably, however, prominent protein bands at 1,632(+)/1,619(-) cm(-1) caused by changes in the beta-sheet structure were eliminated by the mutation, indicating that Trp104 is responsible for transforming the light signal into a specific beta-sheet structure change in the apoprotein of the AppA BLUF domain in the signaling state.  相似文献   

3.
Masuda S  Hasegawa K  Ishii A  Ono TA 《Biochemistry》2004,43(18):5304-5313
The sensor of blue-light using FAD (BLUF) domain is the flavin-binding fold categorized to a new class of blue-light sensing domain found in AppA from Rhodobacter sphaeroides and PAC from Euglena gracilis, but little is known concerning the mechanism of blue-light perception. An open reading frame slr1694 in a cyanobacterium Synechocystis sp. PCC6803 encodes a protein possessing the BLUF domain. Here, a full-length Slr1694 protein retaining FAD was expressed and purified and found to be present as an oligomeric form (trimer or tetramer). Using the purified Slr1694, spectroscopic properties of Slr1694 were characterized. Slr1694 was found to show the same red-shift of flavin absorption and quenching of flavin fluorescence by illumination as those of AppA. These changes reversed in the dark although the rate of dark state regeneration was much faster in Slr1694 than AppA, indicating that Slr1694 is a blue-light receptor based on BLUF with the similar photocycle to that of AppA. The dark decay in D(2)O was nearly four times slower than in H(2)O. Light-induced Fourier transform infrared (FTIR) difference spectroscopy was applied to examine the light-induced structure change of a chromophore and apo-protein with deuteration and universal (13)C and (15)N isotope labeling. The FTIR results indicate that light excitation induced distinct changes in the amide I modes of peptide backbone but relatively limited changes in flavin chromophore. Light excitation predominantly weakened the C(4)=O and C(2)=O bonding and strengthened the N1C10a and/or C4aN5 bonding, indicating formational changes of the isoalloxazine ring II and III of FAD but little formational change in the isoalloxazine ring I. The photocycle of the BLUF is unique in the sense that light excitation leads to the structural rearrangements of the protein moieties coupled with a minimum formational change of the chromophore.  相似文献   

4.
Hasegawa K  Masuda S  Ono TA 《Biochemistry》2006,45(11):3785-3793
Blue-light sensing proteins that use FAD (BLUF) are members of a blue-light receptor family that is widely distributed among microorganisms. The Escherichia coli YcgF protein is a BLUF protein consisting of the N-terminal FAD-binding hold (BLUF domain) and the C-terminal EAL domain. The EAL domain of YcgF is predicted to have cyclic-di-GMP phosphodiesterase activity. Light-induced structural changes for the signaling state formation were studied using the light-induced Fourier transform infrared (FTIR) difference spectroscopy of both the full-length YcgF protein (YcgF-Full) and its BLUF domain (YcgF-BLUF). YcgF-Full and YcgF-BLUF showed identical UV-visible absorption spectra of flavin in the dark state and a light-induced absorption red shift for the signaling state, which relaxed to the dark state showing identical kinetics. The light-induced FTIR difference spectrum of YcgF-Full, however, was markedly different from that of YcgF-BLUF. The spectrum of YcgF-BLUF lacked most of the IR bands that were induced in the YcgF-Full spectrum. These bands were assigned to the light-induced structural changes of the protein. However, the bands for the C4=O stretching of a FAD isoalloxazine ring were induced at the same frequency with the same band intensity in the spectra for YcgF-Full and YcgF-BLUF. Furthermore, the YcgF-Full spectrum resembled that of the YcgF-BLUF when illuminated at medium-low temperatures because of the selective suppression of protein bands. The possibility that full-length-specific protein bands are predominantly ascribed to structural changes of the C-terminal EAL domain in the signaling state as a consequence of light excitation of the N-terminal BLUF domain is discussed.  相似文献   

5.
Hasegawa K  Masuda S  Ono TA 《Biochemistry》2004,43(47):14979-14986
Slr1694 in Synechocystis sp. PCC6803 is a family of blue-light photoreceptors based on flavin adenine dinucleotide (FAD) called BLUF (sensor of blue light using FAD) proteins, which include AppA from Rhodobacter sphaeroides and PAC from Euglena gracilis. Illumination of dark-state Slr1694 at 15 degrees C reversibly induced a signaling light state characterized by the red shift in the UV-visible spectrum and by the light-induced Fourier transform infrared (FTIR) difference spectrum for structural changes of a bound flavin and apo protein. Illumination at the medium-low temperature (-35 degrees C) led to the red shift in the UV-visible spectrum despite some small difference in the light-induced changes. In contrast, the -35 degrees C illumination resulted in a completely different light-induced FTIR spectrum, in which almost all of the bands were suppressed with the exception of the bands for the change of C4=O bonding of the FAD isoalloxazine ring. The C4=O bands were induced at -35 degrees C with almost the same intensity, but the band frequency for the light state was upshifted by 6 cm(-)(1). The changes in frequency of the light-state C4=O band and in amplitude of other bands showed the same temperature dependence with a half-change temperature at approximately -20 degrees C. It was indicated that the light-induced structural changes of apo protein and FAD were inhibited at low temperature with the exception of the change in hydrogen bonding to the C4=O group. The light-induced formation of the FTIR bands was similarly inhibited by sample dehydration. We discussed the possibility that this constrained light state is a trapped intermediate state in the photocycle of Slr1694.  相似文献   

6.
7.
The flavin-adenine-dinucleotide-binding BLUF domain constitutes a new class of blue-light receptors, and the N-terminal domain of AppA is a representative of this family. The BLUF domain is of special interest because it uses a rigid flavin rather than an isomerizable chromophore, such as a rhodopsin or phytochrome, for its light-activation process. Crystal and solution structures of several BLUF domains were recently obtained, and their overall structures are consistent. However, there is a key ambiguity regarding the position of a conserved tryptophan (Trp-104 in AppA), in that this residue was found either close to flavin (Trpin conformation) or exposed to the solvent (Trpout conformation). The location of Trp-104 is a crucial factor in understanding the photocycle mechanism of BLUF domains, because this residue has been shown to play an essential role in the activation of AppA. In this study, we demonstrated a Trpin conformation for the BLUF domain of AppA through direct observation of the vibrational spectrum of Trp-104 by ultraviolet resonance Raman spectroscopy, and also observed light-induced conformational and environmental changes in Trp-104. This study provides a structural basis for future investigations of the photocycle mechanism of BLUF proteins.  相似文献   

8.
A novel FAD-binding domain, BLUF, exemplified by the N-terminus of the AppA protein from Rhodobacter sphaeroides, is present in various proteins, primarily from Bacteria. The BLUF domain is involved in sensing blue-light (and possibly redox) using FAD and is similar to the flavin-binding PAS domains and cryptochromes. The predicted secondary structure reveals that the BLUF domain is a novel FAD-binding fold.  相似文献   

9.
The flavoprotein AppA from Rhodobacter sphaeroides contains an N-terminal domain belonging to a new class of photoreceptors designated BLUF domains. AppA was shown to control photosynthesis gene expression in response to blue light and oxygen tension. We have investigated the photocycle of the AppA BLUF domain by ultrafast fluorescence, femtosecond transient absorption, and nanosecond flash-photolysis spectroscopy. Time-resolved fluorescence experiments revealed four components of flavin adenine dinucleotide (FAD) excited-state decay, with lifetimes of 25 ps, 150 ps, 670 ps, and 3.8 ns. Ultrafast transient absorption spectroscopy revealed rapid internal conversion and vibrational cooling processes on excited FAD with time constants of 250 fs and 1.2 ps, and a multiexponential decay with effective time constants of 90 ps, 590 ps, and 2.7 ns. Concomitant with the decay of excited FAD, the rise of a species with a narrow absorption difference band near 495 nm was detected which spectrally resembles the long-living signaling state of AppA. Consistent with these results, the nanosecond flash-photolysis measurements indicated that formation of the signaling state was complete within the time resolution of 10 ns. No further changes were detected up to 15 micros. The quantum yield of the signaling-state formation was determined to be 24%. Thus, the signaling state of the AppA BLUF domain is formed on the ultrafast time scale directly from the FAD singlet excited state, without any apparent intermediate, and remains stable over 12 decades of time. In parallel with the signaling state, the FAD triplet state is formed from the FAD singlet excited state at 9% efficiency as a side reaction of the AppA photocycle.  相似文献   

10.
On the role of aromatic side chains in the photoactivation of BLUF domains   总被引:1,自引:0,他引:1  
BLUF (blue-light sensing using FAD) domain proteins are a novel group of blue-light sensing receptors found in many microorganisms. The role of the aromatic side chains Y21 and W104, which are in close vicinity to the FAD cofactor in the AppA BLUF domain from Rhodobacter sphaeroides, is investigated through the introduction of several amino acid substitutions at these positions. NMR spectroscopy indicated that in the W104F mutant, the local structure of the FAD binding pocket was not significantly perturbed as compared to that of the wild type. Time-resolved fluorescence and absorption spectroscopy was applied to explore the role of Y21 and W104 in AppA BLUF photochemistry. In the Y21 mutants, FADH*-W* radical pairs are transiently formed on a ps time scale and recombine to the ground state on a ns time scale. The W104F mutant shows a spectral evolution similar to that of wild type AppA but with an increased yield of signaling state formation. In the Y21F/W104F double mutant, all light-driven electron-transfer processes are abolished, and the FAD singlet excited-state evolves by intersystem crossing to the triplet state. Our results indicate that two competing light-driven electron-transfer pathways are available in BLUF domains: one productive pathway that involves electron transfer from the tyrosine, which leads to signaling state formation, and one nonproductive electron-transfer pathway from the tryptophan, which leads to deactivation and the effective lowering of the quantum yield of the signaling state formation. Our results are consistent with a photoactivation mechanism for BLUF domains where signaling state formation proceeds via light-driven electron and proton transfer from the conserved tyrosine to FAD, followed by a hydrogen-bond rearrangement and radical-pair recombination.  相似文献   

11.
Proteins containing a sensor of blue light using FAD (BLUF) domain control diverse cellular processes, such as gene expression, nucleotide metabolism and motility, by relaying blue light signals to distinct output units. Despite its crucial and widespread functions, the mechanism of BLUF signal transduction has remained elusive. We determined crystal structures of the dark-adapted state and of a photo-excited, red-shifted photocycle intermediate of the BLUF unit of AppA, a purple bacterial photoreceptor involved in the light-dependent regulation of photosynthesis gene expression. In contrast to a recently published crystal structure of the AppA BLUF domain determined in the presence of detergent molecules, our structural model of the dark state corresponds well to those reported for the BLUF domains of Tll0078 and BlrB. This establishes that a highly conserved methionine (Met106 in AppA) is next to the active site glutamine (Gln63 in AppA), which is of relevance for the latter's orientation in the dark state and for the mechanism of the photoreaction. The comparison of the dark-adapted and photointermediate state structures shows light-induced conformational alterations, which suggest a path for signal propagation. In particular, we observe a significant movement of the Met106 side-chain. Met106 thereby changes its mode of interaction with Gln63, which supports a light-dependent rotation of the latter. In view of other BLUF structures available, our data further suggest that the hydrogen bond between Asn45 and the backbone carbonyl of His105 breaks upon illumination. The ensuing extensive structural rearrangement of beta-strand 5 is predicted to involve a flip of Met106 out of the flavin-binding pocket and Trp104 moving in to fill the void. We propose that the blue light signal is transmitted towards the surface of the BLUF domain via His44, which serves as a reporter of active site changes.  相似文献   

12.
13.
Photoactivated adenylyl cyclase (PAC) is a recently discovered blue-light photoreceptor that mediates photomovement in Euglena gracilis(Iseki et al., Nature, 2002, 415, 1047--1051). PAC appears to be a heterotetramer composed of two FAD-binding subunits (PACalpha and PACbeta). Both subunits have a pair of homologous regions (F1 and F2) which show homology with prokaryotic "sensors of blue-light using FAD"(BLUF) domains. The F1 and F2 domains of PAC are the only eukaryotic BLUF domains found thus far. We obtained soluble recombinant F1 and F2 proteins in PACalpha by heterologous expression with fused glutathione-S-transferase (GST) in E. coli. The expressed F1 samples did not bind flavins, but the F2 samples contained both FAD and FMN with trace amounts of riboflavin. We also assembled the histidine-tagged recombinant F2 (6His-F2) from inclusion bodies in E. coli with exogenous FAD or FMN. Blue-light-induced changes in absorption spectra of these assembled samples were highly similar to those reported for prokaryotic BLUF domains. The FAD- or FMN-assembled 6His-F2 photocycled with nearly the same rate constants of light-reaction and dark-relaxation, which were slightly lower than those of GST-cleaved F2. The estimated quantum efficiency for the phototransformation was 0.28--0.32, and the half-life was 34--44 s at 25 degrees C for the recombinant PACalpha F2, whereas that reported for prokaryotic BLUF domains varied from ca. 3.5 s (Tll0078) to ca. 900 s (AppA). The mutated recombinant Y472F and Q514G of PACalpha F2 and the F2 domain of the PACalpha homologue from Eutreptiella gymnastica, which lacks the Gln residue conserved in other BLUF domains, showed no photoinduced transformation.  相似文献   

14.
PixD/Slr1694 from the cyanobacterium Synechocystis sp. PCC6803 is a member of a new class of flavin-containing blue-light sensory proteins containing a BLUF (blue light using flavin) domain. The photocycle reaction mechanism of BLUF is unique because only small structural changes of a bound chromophore are accompanied by a few hydrogen bond rearrangements in the chromophore-binding site. Here, we show that in PixD, Met93, the residue conserved in all BLUF domains, is crucial for light-dependent signal transduction. Specifically, the light-insensitive M93A mutant of PixD revealed biochemical and physiological activities compatible with those of the light-adapted wild-type PixD. However, the W91A mutant of PixD retained light sensitivity and biological function, although the corresponding mutant of another BLUF protein, AppA, has been reported to be locked in the light signaling state. These observations suggest that the pathway through which the light signal is transformed into apoprotein structural changes has been modified in BLUF proteins for their respective functions.  相似文献   

15.
16.
The flavoprotein AppA is a blue-light photoreceptor that functions as an antirepressor of photosynthesis gene expression in the purple bacterium Rhodobacter sphaeroides. Heterologous expression studies show that FAD binds to a 156 amino acid N-terminal domain of AppA and that this domain is itself photoactive. A pulse of white light causes FAD absorption to be red shifted in a biphasic process with a fast phase occurring in <1 micros and a slow phase occurring at approximately 5 ms. The absorbance shift was spontaneously restored over a 30 min period, also in a biphasic process as assayed by fluorescence quenching and electronic absorption analyses. Site-directed replacement of Tyr21 with Leu or Phe abolished the photochemical reaction implicating involvement of Tyr21 in the photocycle. Nuclear magnetic resonance analysis of wild-type and mutant proteins also indicates that Tyr21 forms pi-pi stacking interactions with the isoalloxazine ring of FAD. We propose that photochemical excitation of the flavin results in strengthening of a hydrogen bond between the flavin and Tyr 21 leading to a stable local conformational change in AppA.  相似文献   

17.
AppA is a novel blue-light receptor that controls photosynthetic gene expression in the purple bacterium Rhodobacter sphaeroides. The photocycle reaction of the light-sensing domain, BLUF, is unique in the sense that a few hydrogen bond rearrangements are accompanied by only slight structural changes of the bound chromophore. However, the exact features of the hydrogen bond network around the active site are still the subject of some controversy. Here we present biochemical and genetic evidence showing that either Gln63 or Trp104 in the active site of the BLUF domain is crucial for light sensing, which in turn controls the antirepressor activity of AppA. Specifically, the Q63L and W104A mutants of AppA are insensitive to blue light in vivo and in vitro, and their activity is similar to that of the light-adapted wild-type AppA. Based on spectroscopic and structural information described previously, we conclude that light-dependent formation and breakage of the hydrogen bond between Gln63 and Trp104 are critical for the light-sensing mechanism of AppA.  相似文献   

18.
The BLUF (sensor of blue light using FAD) domain is a blue light receptor possessing a flavin molecule as an active cofactor. A conserved Tyr residue located adjacent to flavin has been proposed to be a key amino acid in the mechanism of the photoreaction of the BLUF domain. We have studied the structure of this key Tyr residue and the relevance to the photoreaction in the BLUF protein of the cyanobacterium Thermosynechococcus elongatus, TePixD, by means of Fourier transform infrared (FTIR) difference spectroscopy and density functional theory (DFT) calculations. Light-induced FTIR difference spectra of unlabeled and [4-13C]Tyr-labeled TePixD in H2O and D2O revealed that the nuCO/deltaCOH vibrations of a photosensitive Tyr side chain are located at 1265/1242 cm-1 in the dark-adapted state and at 1273/1235 cm-1 in the light-induced signaling state. These signals were assigned to the vibrations of Tyr8 near flavin from the absence of the effect of [4-13C]Tyr labeling in the Tyr8Phe mutant. DFT calculations of H-bonded complexes of p-cresol with amides as models of the Tyr8-Gln50 interactions showed that Tyr8 acts as a H-bond donor to the Gln50 in both of the dark and light states. Further DFT analysis suggested that this H-bond is strengthened upon photoconversion to the light state accompanied with a change in the H-bond angle. The change in the H-bond structure of Tyr8 is coupled to the flavin photoreaction probably through the Tyr8-Gln50-flavin H-bond network, suggesting a significant role of Tyr8 in the photoreaction mechanism of TePixD.  相似文献   

19.
Dragnea V  Waegele M  Balascuta S  Bauer C  Dragnea B 《Biochemistry》2005,44(49):15978-15985
AppA is a blue-light and redox-responding regulator of photosynthesis gene expression in Rhodobacter sphaeroides. Detailed time-resolved fluorescence spectroscopy and subpicosecond transient absorption spectroscopy study of the BLUF domain is presented for wild-type AppA (AppAwt) and a photoinactive Y21F mutant of AppA. The main findings discussed here are that (1) time-resolved laser excitation studies on dark-adapted protein show that AppAwt and Y21F mutant protein exhibits a fluorescence decay with a lifetime of 0.6 ns. Dark-adapted AppAwt but not Y21F also exhibits slower fluorescence decay with a lifetime of 1.7 ns. Analysis of AppAwt that was light-excited to a stable light-adapted form prior to data collection shows monoexponential fluorescence decay with a lifetime of 1.0 ns. This component disappeared after 1 min of data collection after which the original "dark-adapted" values were recovered, demonstrating the presence of a approximately 1 min lifetime intermediate during the return of AppA from light- to dark-adapted form. (2) Transient absorption spectral analysis reveals a very fast rising of transient absorption (<1 ps) for AppAwt. This fast component is missing in the Y21F mutant, which lacks Tyr21, giving rise to a slower transient absorption at 4-6 ps. In the AppAwt transient spectra, most ground states recover within approximately 30 ps, compared to approximately 90-130 ps in the mutant Y21F. We propose that a temporary electron transfer occurs from Tyr21 to the N5 of flavin in AppAwt and is a triggering event for subsequent hydrogen-bond rearrangements. Dynamics of the AppA photocycle is discussed in view of the currently solved crystallographic structure of AppA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号