首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
TAR DNA-binding protein 43 (TDP-43) is a major component in aggregates of ubiquitinated proteins in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here we report that lipopolysaccharide (LPS)-induced inflammation can promote TDP-43 mislocalization and aggregation. In culture, microglia and astrocytes exhibited TDP-43 mislocalization after exposure to LPS. Likewise, treatment of the motoneuron-like NSC-34 cells with TNF-alpha (TNF-α) increased the cytoplasmic levels of TDP-43. In addition, the chronic intraperitoneal injection of LPS at a dose of 1mg/kg in TDP-43A315T transgenic mice exacerbated the pathological TDP-43 accumulation in the cytoplasm of spinal motor neurons and it enhanced the levels of TDP-43 aggregation. These results suggest that inflammation may contribute to development or exacerbation of TDP-43 proteinopathies in neurodegenerative disorders.  相似文献   

3.
TAR DNA-binding protein of 43 kDa (TDP-43) is the major component of the intracellular inclusions in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here, we show that both monoclonal (60019-2-Ig) and polyclonal (10782-2-AP) anti-TDP-43 antibodies recognize amino acids 203-209 of human TDP-43. The monoclonal antibody labeled human TDP-43 by recognizing Glu204, Asp205 and Arg208, but failed to react with mouse TDP-43. The antibodies stained the abnormally phosphorylated C-terminal fragments of 24-26 kDa in addition to normal TDP-43 in ALS and FTLD brains. Immunoblot analysis after protease treatment demonstrated that the epitope of the antibodies (residues 203-209) constitutes part of the protease-resistant domain of TDP-43 aggregates which determine a common characteristic of the pathological TDP-43 in both ALS and FTLD-TDP. The antibodies and methods used in this study will be useful for the characterization of abnormal TDP-43 in human materials, as well as in vitro and animal models for TDP-43 proteinopathies.  相似文献   

4.
5.
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two fatal neurodegenerative disorders with considerable clinical, pathological and genetic overlap. Both disorders are characterized by the accumulation of pathological protein aggregates that contain a number of proteins, most notably TAR DNA binding protein 43?kDa (TDP-43). Surprisingly, recent clinical studies suggest that dyslipidemia, high body mass index, and type 2 diabetes mellitus are associated with better clinical outcomes in ALS. Moreover, ALS and FTLD patients have a significantly lower incidence of cardiovascular disease, supporting the idea that an unfavorable metabolic profile may be beneficial in ALS and FTLD. The two most widely studied ALS/FTLD models, super-oxide dismutase 1 (SOD1) and TAR DNA binding protein of 43 kDA (TDP-43), reveal metabolic dysfunction and a positive effect of metabolic strategies on disease onset and/or progression. In addition, molecular studies reveal a role for ALS/FTLD-associated proteins in the regulation of cellular and whole-body metabolism. Here, we systematically evaluate these observations and discuss how changes in cellular glucose/lipid metabolism may result in abnormal protein aggregations in ALS and FTLD, which may have important implications for new treatment strategies for ALS/FTLD and possibly other neurodegenerative conditions.  相似文献   

6.
Cytoplasmic inclusions containing TAR DNA-binding protein of 43 kDa (TDP-43) or Fused in sarcoma (FUS) are a hallmark of amyotrophic lateral sclerosis (ALS) and several subtypes of frontotemporal lobar degeneration (FTLD). FUS-positive inclusions in FTLD and ALS patients are consistently co-labeled with stress granule (SG) marker proteins. Whether TDP-43 inclusions contain SG markers is currently still debated. We determined the requirements for SG recruitment of FUS and TDP-43 and found that cytoplasmic mislocalization is a common prerequisite for SG recruitment of FUS and TDP-43. For FUS, the arginine-glycine-glycine zinc finger domain, which is the protein's main RNA binding domain, is most important for SG recruitment, whereas the glycine-rich domain and RNA recognition motif (RRM) domain have a minor contribution and the glutamine-rich domain is dispensable. For TDP-43, both the RRM1 and the C-terminal glycine-rich domain are required for SG localization. ALS-associated point mutations located in the glycine-rich domain of TDP-43 do not affect SG recruitment. Interestingly, a 25-kDa C-terminal fragment of TDP-43, which is enriched in FTLD/ALS cortical inclusions but not spinal cord inclusions, fails to be recruited into SG. Consistently, inclusions in the cortex of FTLD patients, which are enriched for C-terminal fragments, are not co-labeled with the SG marker poly(A)-binding protein 1 (PABP-1), whereas inclusions in spinal cord, which contain full-length TDP-43, are frequently positive for this marker protein.  相似文献   

7.
TDP-43: a novel neurodegenerative proteinopathy   总被引:3,自引:0,他引:3  
Over the past decade, it has become clear that there is a significant overlap in the clinical spectrum of frontotemporal lobar degeneration and amyotrophic lateral sclerosis (ALS). The identification of TDP-43 as the major disease protein in the pathology of both frontotemporal lobar degeneration with ubiquitin inclusions and ALS provides the first molecular link for these diseases. Pathological TDP-43 is abnormally phosphorylated, ubiquitinated, and cleaved to generate carboxy-terminal fragments in affected brain regions. The normal nuclear expression of TDP-43 is also reduced leading to the hypothesis that sequestration of TDP-43 in pathological inclusions contributes to disease pathogenesis. Thus, TDP-43 is the newest member of the growing list of neurodegenerative proteinopathies, but unique in that it lacks features of brain amyloidosis.  相似文献   

8.
Given the critical role for TDP-43 in diverse neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP), there has been a recent surge in efforts to understand the normal functions of TDP-43 and the molecular basis of dysregulation that occurs in TDP-43 proteinopathies. Here, we highlight recent findings examining TDP-43 molecular functions with particular emphasis on stress-mediated regulation of TDP-43 localization, putative downstream TDP-43 target genes and RNAs, as well as TDP-43 interacting proteins, all of which represent viable points of therapeutic intervention for ALS, FTLD-TDP and related proteinopathies. Finally, we review current mouse models of TDP-43 and discuss their similarities and potential relevance to human TDP-43 proteinopathies including ALS and FTLD-TDP.  相似文献   

9.
10.
TDP-43 proteinopathies have been observed in a wide range of neurodegenerative diseases. Mutations in the gene encoding TDP-43 (i.e., TDP) have been identified in amyotrophic lateral sclerosis (ALS) and in frontotemporal lobe degeneration associated with motor neuron disease. To study the consequences of TDP mutation in an intact system, we created transgenic rats expressing normal human TDP or a mutant form of human TDP with a M337V substitution. Overexpression of mutant, but not normal, TDP caused widespread neurodegeneration that predominantly affected the motor system. TDP mutation reproduced ALS phenotypes in transgenic rats, as seen by progressive degeneration of motor neurons and denervation atrophy of skeletal muscles. This robust rat model also recapitulated features of TDP-43 proteinopathies including the formation of TDP-43 inclusions, cytoplasmic localization of phosphorylated TDP-43, and fragmentation of TDP-43 protein. TDP transgenic rats will be useful for deciphering the mechanisms underlying TDP-43–related neurodegenerative diseases.  相似文献   

11.
ALS, or amyotrophic lateral sclerosis, is a progressive and fatal motor neuron disease with no effective medicine. Importantly, the majority of the ALS cases are with TDP-43 proteinopathies characterized with TDP-43-positive, ubiquitin-positive inclusions (UBIs) in the cytosol. However, the role of the mismetabolism of TDP-43 in the pathogenesis of ALS with TDP-43 proteinopathies is unclear. Using the conditional mouse gene targeting approach, we show that mice with inactivation of the Tardbp gene in the spinal cord motor neurons (HB9:Cre-Tardbp(lx/-)) exhibit progressive and male-dominant development of ALS-related phenotypes including kyphosis, motor dysfunctions, muscle weakness/atrophy, motor neuron loss, and astrocytosis in the spinal cord. Significantly, ubiquitinated proteins accumulate in the TDP-43-depleted motor neurons of the spinal cords of HB9:Cre-Tardbp(lx/-) mice with the ALS phenotypes. This study not only establishes an important role of TDP-43 in the long term survival and functioning of the mammalian spinal cord motor neurons, but also establishes that loss of TDP-43 function could be one major cause for neurodegeneration in ALS with TDP-43 proteinopathies.  相似文献   

12.
TAR DNA-binding protein-43 (TDP-43) is a highly conserved, ubiquitously expressed nuclear protein that was recently identified as the disease protein in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Pathogenic TDP-43 gene (TARDBP) mutations have been identified in familial ALS kindreds, and here we report a TARDBP variant (A90V) in a FTLD/ALS patient with a family history of dementia. Significantly, A90V is located between the bipartite nuclear localization signal sequence of TDP-43 and the in vitro expression of TDP-43-A90V led to its sequestration with endogenous TDP-43 as insoluble cytoplasmic aggregates. Thus, A90V may be a genetic risk factor for FTLD/ALS because it predisposes nuclear TDP-43 to redistribute to the cytoplasm and form pathological aggregates.  相似文献   

13.
The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43-positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the approximately 25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis.  相似文献   

14.
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease. To date, there is no any effective pharmacological treatment for improving patients'' symptoms and quality of life. Rapidly emerging evidence suggests that C-terminal fragments (CTFs) of TAR DNA-binding protein of 43 kDa (TDP-43), including TDP-35 and TDP-25, may play an important role in ALS pathogenesis. Valproate (VPA), a widely used antiepileptic drug, has neuroprotective effects on neurodegenerative disorders. As for ALS, preclinical studies also provide encouraging evidence for multiple beneficial effects in ALS mouse models. However, the potential molecular mechanisms have not been explored. Here, we show protective effects of VPA against TDP-43 CTFs-mediated neuronal toxicity and its underlying mechanisms in vitro. Remarkably, TDP-43 CTFs induced neuronal damage via endoplastic reticulum (ER) stress-mediated apoptosis. Furthermore, autophagic self-defense system was activated to reduce TDP-43 CTFs-induced neuronal death. Finally, VPA attenuated TDP-25-induced neuronal toxicity via suppressing ER stress-mediated apoptosis and enhancing autophagy. Taken together, these results demonstrate that VPA exerts neuroprotective effects against TDP-43 CTFs-induced neuronal damage. Thus, we provide new molecular evidence for VPA treatment in patients with ALS and other TDP-43 proteinopathies.  相似文献   

15.
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) are major neurodegenerative diseases with TDP-43 pathology. Here we investigated the effects of methylene blue (MB) and dimebon, two compounds that have been reported to be beneficial in phase II clinical trials of Alzheimer’s disease (AD), on the formation of TDP-43 aggregates in SH-SY5Y cells. Following treatment with 0.05 μM MB or 5 μM dimebon, the number of TDP-43 aggregates was reduced by 50% and 45%, respectively. The combined use of MB and dimebon resulted in a 80% reduction in the number. These findings were confirmed by immunoblot analysis. The results indicate that MB and dimebon may be useful for the treatment of ALS, FTLD-U and other TDP-43 proteinopathies.  相似文献   

16.
Sun Z  Diaz Z  Fang X  Hart MP  Chesi A  Shorter J  Gitler AD 《PLoS biology》2011,9(4):e1000614
TDP-43 and FUS are RNA-binding proteins that form cytoplasmic inclusions in some forms of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Moreover, mutations in TDP-43 and FUS are linked to ALS and FTLD. However, it is unknown whether TDP-43 and FUS aggregate and cause toxicity by similar mechanisms. Here, we exploit a yeast model and purified FUS to elucidate mechanisms of FUS aggregation and toxicity. Like TDP-43, FUS must aggregate in the cytoplasm and bind RNA to confer toxicity in yeast. These cytoplasmic FUS aggregates partition to stress granule compartments just as they do in ALS patients. Importantly, in isolation, FUS spontaneously forms pore-like oligomers and filamentous structures reminiscent of FUS inclusions in ALS patients. FUS aggregation and toxicity requires a prion-like domain, but unlike TDP-43, additional determinants within a RGG domain are critical for FUS aggregation and toxicity. In further distinction to TDP-43, ALS-linked FUS mutations do not promote aggregation. Finally, genome-wide screens uncovered stress granule assembly and RNA metabolism genes that modify FUS toxicity but not TDP-43 toxicity. Our findings suggest that TDP-43 and FUS, though similar RNA-binding proteins, aggregate and confer disease phenotypes via distinct mechanisms. These differences will likely have important therapeutic implications.  相似文献   

17.
In recent years there have been several reports of human neurodegenerative diseases that involve protein misfolding being modeled in the yeast Saccharomyces cerevisiae. This review summarizes recent advances in understanding the specific mechanisms underlying intracellular neuronal pathology during Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD), including SOD1, TDP-43 and FUS protein inclusions and the potential of these proteins to be involved in pathogenic prion-like mechanisms. More specifically, we focus on findings from yeast systems that offer tremendous possibilities for screening for genetic and chemical modifiers of disease-related proteotoxicity.Key words: amyotrophic lateral sclerosis, ALS, frontotemporal lobar degeneration, FTLD, yeast, amyloid, prion, FUS, TDP-43, SOD1  相似文献   

18.
TDP-43 (TAR DNA-binding protein 43) has been identified as a key protein of ubiquitinated inclusions in brains of patients with ALS (amyotrophic lateral sclerosis) or FTLD (frontotemporal lobar degeneration), defining a new pathological disease spectrum. Recently, coding mutations have been identified in the TDP-43 gene (TARDBP), which further confirmed the pathogenic nature of the protein. Today, several animal models have been generated to gain more insight into the disease-causing pathways of the FTLD/ALS spectrum. This mini-review summarizes the current status of TDP-43 models, with a focus on mutant TDP-43.  相似文献   

19.
随着全球老龄化人口的急剧增加,神经退行性变已经成为危害公共健康的主要疾病.在神经退行性疾病(肌萎缩侧索硬化症(ALS)、额颞叶变性病(FTLD)和阿尔茨海默病(AD)等)患者脑组织中均能观察到蛋白质聚集形成的包涵体,其中TAR DNA结合蛋白43 (TDP-43)是主要成分之一.目前已发现多个TDP-43基因突变与家族...  相似文献   

20.
《Biophysical journal》2022,121(11):2107-2126
Cytoplasmic inclusions containing aberrant proteolytic fragments of TDP-43 are associated with frontotemporal lobar degeneration (FTLD) and other related pathologies. In FTLD, TDP-43 is translocated into the cytoplasm and proteolytically cleaved to generate a prion-like domain (PrLD) containing C-terminal fragments (C25 and C35) that form toxic inclusions. Under stress, TDP-43 partitions into membraneless organelles called stress granules (SGs) by coacervating with RNA and other proteins. To study the factors that influence the dynamics between these cytoplasmic foci, we investigated the effects of cysteine-rich granulins (GRNs 1–7), which are the proteolytic products of progranulin, a protein implicated in FTLD, on TDP-43. We show that extracellular GRNs, typically generated during inflammation, internalize and colocalize with PrLD as puncta in the cytoplasm of neuroblastoma cells but show less likelihood of their presence in SGs. In addition, we show GRNs and PrLD coacervate to undergo liquid-liquid phase separation (LLPS) or form gel- or solid-like aggregates. Using charge patterning and conserved cysteines among the wild-type GRNs as guides, along with specifically engineered mutants, we discover that the negative charges on GRNs drive LLPS while the positive charges and the redox state of cysteines modulate these phase transitions. Furthermore, RNA and GRNs compete and expel one another from PrLD condensates, providing a basis for GRN’s absence in SGs. Together, the results help uncover potential modulatory mechanisms by which extracellular GRNs, formed during chronic inflammatory conditions, could internalize and modulate cytoplasmic TDP-43 inclusions in proteinopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号