首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adrenal steroid hormone dehydroepiandrosterone (DHEA) and its sulfated derivative [DHEA(S)] have been extensively studied for their potential anti-aging effects. Associated with aging, DHEA levels decline in humans, whereas other adrenal hormones remain unchanged, suggesting that DHEA may be important in the aging process. However, the effect of DHEA(S) supplementation on cardiac function in the aged has not been investigated. Therefore, we administered to young and old female mice a 60-day treatment with exogenous DHEA(S) at a dose of 0.1 mg/ml in the drinking water and compared the effects on left ventricular diastolic function and the myocardial extracellular matrix composition. The left ventricular stiffness (beta) was 0.30 +/- 0.06 mmHg/mul in the older control mice compared with 0.17 +/- 0.02 mmHg/mul in young control mice. Treatment with DHEA(S) decreased left ventricular stiffness to 0.12 +/- 0.03 mmHg/mul in the older mice and increased left ventricular stiffness to 0.27 +/- 0.04 mmHg/mul in young mice. The mechanism for the DHEA(S)-induced changes in diastolic function appeared to be associated with altered matrix metalloproteinase activity and the percentage of collagen cross-linking. We conclude that exogenous DHEA(S) supplementation is capable of reversing the left ventricular stiffness and fibrosis that accompanies aging, with a paradoxical increased ventricular stiffness in young mice.  相似文献   

2.
Hearts from rats pretreated either with L-triiodothyronine (T3) or with L-thyroxine (T4) exhibited changed function curve characteristics on the working heart apparatus compared with hearts from vehicle-treated rats. There was no supersensitivity of the hyperthyroid myocardium to the inotropic effect of isoproterenol as estimated by pD2 values. There were significant increases in +dP/dt and -dP/dt in hyperthyroid working hearts over the entire range of the function curve. T3 hearts showed much shorter relaxation times and total contraction times throughout the function curve. T4 hearts showed significantly reduced relaxation times and total contraction times as compared with control at all left atrial filling pressures under 15 cm of water. At high filling pressures T4 heart relaxation times and total contraction times were not different from control, but were however, significantly increased from those of T3 hearts. Area under the left ventricular pressure curve was unchanged by thyroid hormone pretreatment. Heart weight increased about 15% following either T3 or T4 treatment while the increases in (+) or (-) dP/dt and the left ventricular developed pressure (LVDP) were about 20-30%. The increase in cardiac mass certainly played a role in the increased cardiac function. Potency of isoproterenol in hyperthyroid working heart preparations was unchanged from control. The pD2 values, as determined from +dP/dt data, were 8.8 +/- 0.15 for T3-treated hearts, 8.25 +/- 0.40 for T4-treated hearts, and 8.18 +/- 0.12 for euthyroid hearts. While the mechanism(s) for the altered performance of the hyperthyroid working heart are not absolutely known, possible biochemical and physiological changes which may be implicated are discussed.  相似文献   

3.
Thyroxine can cause cardiac hypertrophy by activating growth factors, such as IGF-I (insulin-like growth factor-I). Since oxidative stress is enhanced in the hyperthyroidism, it would control protein expression involved in this hypertrophy. Male Wistar rats were divided into four groups: (I) control, (II) vitamin E-supplemented (20 mg/kg/day subcutaneous), (III) hyperthyroid (thyroxine 12 mg/l, in drinking water), and (IV) hyperthyroid + vitamin E. After 4 weeks, the contractility and relaxation indexes of left ventricle (LV), and cardiac mass were increased by 54%, 60%, and 60%, respectively, in hyperthyroid group. An increase in lipid peroxidation (around 40%), and a decrease in total glutathione (by 20%) was induced by thyroxine and avoided by vitamin E administration. Superoxide dismutase (SOD) and glutathione-S-transferase (GST) activities were increased (by 83% and 54%, respectively) in hyperthyroid, and vitamin E avoided changes in SOD. Protein expression of SOD, GST, and IGF-I receptor (IGF-IR) were increased (by 87%, 84%, and 60%, respectively) by thyroxine, and vitamin E promoted a significant reduction in SOD and IGF-IR expression (by 36% and 17%, respectively). These results indicate that oxidative stress is involved in cardiac hypertrophy, and suggest a role for IGF-IR as a mediator of this adaptive response in experimental hyperthyroidism.  相似文献   

4.
We hypothesized that nitric oxide generated by inducible nitric oxide synthase (iNOS) may contribute to the homeostatic role of this agent in hyperthyroidism and may, therefore, participate in long-term control of blood pressure (BP). The effects of chronic iNOS inhibition by oral aminoguanidine (AG) administration on BP and morphological and renal variables in hyperthyroid rats were analyzed. The following four groups (n = 8 each) of male Wistar rats were used: control group and groups treated with AG (50 mg.kg(-1).day(-1), via drinking water), thyroxine (T4, 50 microg.rat(-1).day(-1)), or AG + T4. All treatments were maintained for 3 wk. Tail systolic BP and heart rate (HR) were recorded weekly. Finally, we measured BP (mmHg) and HR in conscious rats and morphological, plasma, and renal variables. T(4) administration produced a small BP (125 +/- 2, P < 0.05) increase vs. control (115 +/- 2) rats. AG administration to normal rats did not modify BP (109 +/- 3) or any other hemodynamic variable. However, coadministration of T4 and AG produced a marked increase in BP (140 +/- 3, P < 0.01 vs. T4). Pulse pressure and HR were increased in both T4- and T4 + AG -treated groups without differences between them. Plasma NOx (micromol/l) were increased in the T4 group (10.02 +/- 0.15, P < 0.05 vs. controls 6.1 +/- 0.10), and AG reduced this variable in T4-treated rats (6.81 +/- 0.14, P < 0.05 vs. T4) but not in normal rats (5.78 +/- 0.20). Renal and ventricular hypertrophy and proteinuria of hyperthyroid rats were unaffected by AG treatment. In conclusion, the results of the present paper indicate that iNOS activity may counterbalance the prohypertensive effects of T4.  相似文献   

5.
Cardiovascular dysfunction is characteristic of both hypo- and hyperthyroidism. Endothelium-dependent dilation of conductance vessels is impaired in hypothyroidism but augmented in hyperthyroidism. We hypothesized that these alterations in dilation extend into the resistance vasculature of skeletal muscle. To test this hypothesis, rats were made hypothyroid with propylthiouracil (Hypo; n = 13) or hyperthyroid with triiodothyronine (Hyper; n = 9) over 3-4 mo. Compared with euthyroid controls (Eut; n = 14), Hypo rats were characterized by reduced skeletal muscle oxidative capacity and blunted growth; Hyper rats exhibited increased muscle oxidative capacity and left ventricular hypertrophy (P < 0.05 for all effects). Vasodilation to the endothelium-dependent agent acetylcholine ( approximately 2 x 10(-4) M) in skeletal muscle was determined in situ. Conductance in certain muscles increased from control [e.g., soleus: 0.98 +/- 0.15 (Eut), 0.79 +/- 0.14 (Hypo), and 1.06 +/- 0.24 ml.min(-1).100 g(-1).mmHg(-1) (Hyper); not significant among groups] to acetylcholine [1.91 +/- 0.21 (Eut), 2.28 +/- 0.26 (Hypo), and 2.15 +/- 0.33 ml.min(-1).100 g(-1).mmHg(-1) (Hyper); P < 0.05 vs. control values for all groups] but did not differ among groups. Expression of mRNA for the endothelial isoform of nitric oxide synthase in resistance vessels isolated from various muscles was similarly unchanged with alterations in thyroid status [e.g., soleus 1A arterioles: 33.15 +/- 0.58 (Eut), 32.73 +/- 0.27 (Hypo), and 32.80 +/- 0.54 (Hyper) cycles at threshold; not significant]. These data suggest that endothelium-dependent dilation of resistance vasculature in skeletal muscle is unchanged in both hypo- and hyperthyroidism. These data also emphasize the importance of examining resistance vasculature to improve understanding of effects of chronic disease on integrated cardiovascular function.  相似文献   

6.
In the heart, elevated thyroid hormone leads to upregulation of metabolic pathways associated with energy production and development of hypertrophy. The malate/aspartate shuttle, which transfers cytosolic-reducing equivalents into the cardiac mitochondria, is increased 33% in hyperthyroid rats. Within the shuttle, the aspartate-glutamate carrier is rate limiting. The excitatory amino acid transporter type 1 (EAAT1) functions as a glutamate carrier in the malate/aspartate shuttle. In this study, we hypothesize that EAAT1 is regulated by thyroid hormone. Adult rats were injected with triiodothyronine (T3) or saline over a period of 8-9 days or provided with propylthiouracil (PTU) in their drinking water for 2 mo. Steady-state mRNA levels of EAAT1 and aralar1 and citrin (both cardiac mitochondrial aspartate-glutamate transporters) were determined by Northern blot analysis and normalized to 18S rRNA. A spectrophotometric assay of maximal malate/aspartate shuttle activity was performed on isolated cardiac mitochondria from PTU-treated and control animals. Protein lysates from mitochondria were separated by SDS-PAGE and probed with a human anti-EAAT1 IgG. Compared with control, EAAT1 mRNA levels (arbitrary units) were increased nearly threefold in T3-treated (3.1 +/- 0.5 vs. 1.1 +/- 0.2; P < 0.05) and decreased in PTU-treated (2.0 +/- 0. 3 vs. 5.2 +/- 1; P < 0.05) rats. Aralar1 mRNA levels were unchanged in T3-treated and somewhat decreased in PTU-treated (7.1 +/- 1.0 vs. 9.3 +/- 0.1, P < 0.05) rats. Citrin mRNA levels were decreased in T3-treated and unchanged in PTU-treated rats. EAAT1 protein levels (arbitrary units) in T3-treated cardiac mitochondria were increased compared with controls (8.9 +/- 0.4 vs. 5.9 +/- 0.6; P < 0.005) and unchanged in PTU-treated mitochondria. No difference in malate/aspartate shuttle capacity was found between PTU-treated and control cardiac mitochondria. Hyperthyroidism in rats is related to an increase in cardiac expression of EAAT1 mRNA and protein. The 49% increase in EAAT1 mitochondrial protein level shows that malate/aspartate shuttle activity increased in hyperthyroid rat cardiac mitochondria. Although hypothyroidism resulted in a decrease in EAAT1 mRNA, neither the EAAT1 protein level nor shuttle activity was affected. EAAT1 regulation by thyroid hormone may facilitate increased metabolic demands of the cardiomyocyte during hyperthyroidism and impact cardiac function in hyperthyroidism.  相似文献   

7.
This study evaluated the activity of cardiac and renal antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione reductase (GR)] and whether chronic treatment with tempol, a cell membrane-permeable SOD mimetic, ameliorates the hypertension of hyperthyroidism. Two experiments were performed. In experiment I, the following four groups of male Wistar rats were used: control group and three groups that received thyroxine (T4) at 10, 50, or 75 microg x rat(-1) x day(-1). In experiment II, tempol was orally administered (18 mg x kg(-1) x day(-1)) to control and T4-treated (75 microg x rat(-1) x day(-1)) rats. All treatments were maintained for 6 wk. Body weight, tail systolic blood pressure (BP), and heart rate were measured one time a week, and direct BP and morphological, metabolic, plasma, and renal variables were measured at the end of the experiment. Enzymatic activities were measured in renal cortex and medulla and right and left ventricles. In renal cortex, SOD activity was decreased in the T4-75 group, and there was a dose-related increase in CAT activity and decrease in GPX and GR activities in T4-treated groups. Activity of all antioxidant enzymes was reduced in left ventricle in T4-50 and T4-75 groups and in right ventricle in the T4-75 group. Tempol reduced BP, plasma malondialdehyde, and total urinary excretion of F2 isoprostanes in hypertensive hyperthyroid rats but not in controls. Tempol did not improve cardiac hypertrophy, proteinuria, or creatinine clearance in hyperthyroid rats. In conclusion, the results obtained indicate that the activity of SOD, GPX, and GR in renal and cardiac tissues is decreased in hyperthyroidism and that antioxidant treatment with tempol ameliorates T4-induced hypertension.  相似文献   

8.
During ischemic heart diseases and when heart failure progresses depletion of myocardial energy stores occurs. D-Ribose (R) has been shown to improve cardiac function and energy status after ischemia. Folic acid (FA) is an essential cofactor in the formation of adenine nucleotides. Therefore, we assessed whether chronic R-FA administration during the development of hypertrophy resulted in an improved cardiac function and energy status. In Wistar rats (n = 40) compensatory right ventricular (RV) hypertrophy was induced by monocrotaline (30 mg/kg; MCT), whereas saline served as control. Both groups received a daily oral dose of either 150 mg.kg(-1).day(-1) dextrose (placebo) or R-FA (150 and 40 mg.kg(-1).day(-1), respectively). In Langendorff-perfused hearts, RV and left ventricular (LV) pressure development and collagen content as well as total RV adenine nucleotides (TAN), creatine content, and RV and LV collagen content were determined. In the control group R-FA had no effect. In the MCT-placebo group, TAN and creatine content were reduced, RV and LV diastolic pressure-volume relations were steeper, RV systolic pressures were elevated, RV and LV collagen content was increased, and RV-LV diastolic interaction was altered compared with controls. In the MCT-R-FA group, TAN, RV and LV diastolic stiffness, RV and LV collagen content, and RV-LV diastolic interaction were normalized to the values in the control group while creatine content remained depressed and RV systolic function remained elevated. In conclusion, the depression of energy status in compensated hypertrophic myocardium observed was partly prevented by chronic R-FA administration and accompanied by a preservation of diastolic function and collagen deposition.  相似文献   

9.
We recently reported that hyperthyroidism affects the heart response to ischemia/reperfusion. A significant tachycardia during reperfusion was associated with an increase in the oxidative stress of hearts from T3-treated animals. In the present study we checked the possible role of nitric oxide (NO) in this major stress induced by the hyperthyroid state. We compared the functional recovery from ischemia/reperfusion of Langendorff preparations from euthyroid (E) and hyperthyroid (H, ten daily intraperitoneal injections of T3, 10 microg/100 g body weight) rats, in the presence and in the absence of 0.2 mM Nomega-nitro-L-arginine (L-NNA). At the end of the ischemia/reperfusion protocol (10 min preischemic perfusion, 20 min global ischemia, 30 min reperfusion) lipid peroxidation, antioxidant capacity (CA) and susceptibility to in vitro oxidative stress were determined on heart homogenates. The main effect of hyperthyroidism on the reperfusion functional response was confirmed to be a strong tachycardic response (154% recovery at 25 min reperfusion) accompanied by a low recovery in both left ventricular diastolic pressure (LVDP) and left ventricular dP/dtmax. This functional response was associated with a reduction in CA and an increase in both lipid peroxidation and susceptibility to oxidative stress. Perfusion of hearts with L-NNA per se had small but significant negative chronotropic and positive inotropic effects on preischemic performance of euthyroid rat hearts only. More importantly, L-NNA perfusion completely blocked the reperfusion tachycardic response in the hyperthyroid rats. Concomitantly, myocardium oxidative state (lipid peroxidation, CA and in vitro susceptibility to oxidative stress) of L-NNA perfused hearts was similar to that of E animals. These results suggest that the higher reperfusion-induced injury occurring in hyperthyroid animals is associated with overproduction of nitric oxide.  相似文献   

10.
Hyperthyroidism in rats is associated with increased oxidative stress. These animals also show abnormal renal hemodynamics and an attenuated pressure-diuresis-natriuresis (PDN) response. We analyzed the role of oxidative stress as a mediator of these alterations by examining acute effects of tempol, a superoxide dismutase mimetic. The effects of increasing bolus doses of tempol (25-150 micromol/kg) on mean arterial pressure (MAP), renal vascular resistance (RVR), and cortical (CBF) and medullary (MBF) blood flow were studied in control and thyroxine (T4)-treated rats. In another experiment, tempol was infused at 150 micromol.kg(-1).h(-1) to analyze its effects on the glomerular filtration rate (GFR) and on PDN response in these animals. Tempol dose dependently decreased MAP and RVR and increased CBF and MBF in control and T4-treated rats, but the T4 group showed a greater responsiveness to tempol in all of these variables. The highest dose of tempol decreased RVR by 13.5 +/- 2.1 and 5.5 +/- 1.2 mmHg.ml(-1).min(-1) in hyperthyroid (P < 0.01) and control rats, respectively. GFR was not changed by tempol in controls but was significantly increased in the hyperthyroid group. Tempol did not change the absolute or fractional PDN responses of controls but significantly improved those of hyperthyroid rats, although without attaining normal values. Tempol increased the slopes of the relationship between renal perfusion pressure and natriuresis (T4+tempol: 0.17 +/- 0.05; T4: 0.09 +/- 0.03 microeq.min(-1).g(-1).mmHg(-1); P < 0.05) and reduced 8-isoprostane excretion in hyperthyroid rats. These results show that antioxidant treatment with tempol improves renal hemodynamic variables and PDN response in hyperthyroid rats, indicating the participation of an increased oxidative stress in these mechanisms.  相似文献   

11.
We investigated the influence of myocardial collagen volume fraction (CVF, %) and hydroxyproline concentration (microg/mg) on rat papillary muscle function. Collagen excess was obtained in 10 rats with unilateral renal ischemia for 5 wk followed by 3-wk treatment with ramipril (20 mg. kg(-1). day(-1)) (RHTR rats; CVF = 3.83 +/- 0. 80, hydroxyproline = 3.79 +/- 0.50). Collagen degradation was induced by double infusion of oxidized glutathione (GSSG rats; CVF = 2.45 +/- 0.52, hydroxyproline = 2.85 +/- 0.18). Nine untreated rats were used as controls (CFV = 3.04 +/- 0.58, hydroxyproline = 3.21 +/- 0.30). Active stiffness (AS; g. cm(-2). %L(max)(-1)) and myocyte cross-sectional area (MA; micrometer(2)) were increased in the GSSG rats compared with controls [AS 5.86 vs. 3.96 (P < 0.05); MA 363 +/- 59 vs. 305 +/- 28 (P < 0.05)]. In GSSG and RHTR groups the passive tension-length curves were shifted downwards, indicating decreased passive stiffness, and upwards, indicating increased passive stiffness, respectively. Decreased collagen content induced by GSSG is related to myocyte hypertrophy, decreased passive stiffness, and increased AS, and increased collagen concentration causes myocardial diastolic dysfunction with no effect on systolic function.  相似文献   

12.
Isolated hearts of the majority of rats receiving 20 mg/kg adriamycin for 10 weeks exhibited normal pump function. Left ventricular diastolic stiffness of these hearts was approximately 1.5 times higher, as compared to control hearts, with the filling pressure in the range of 5 to 20 cm H2O and diastolic pause 23% longer due to bradycardia. Pacing-induced increase in the heart rate up to the control level resulted in further increase in left ventricular diastolic stiffness due to the rise in myocardial stiffness, associated with a fall in cardiac output by 36%. The heart and right atrial compliance determined in separate experiments did not differ significantly from the control. The results suggest that increased left ventricular diastolic stiffness of adriamycin-treated rats seems to be rather due to energy-dependent disturbance in myofibril relaxation than to usually arising myocardial fibrosis.  相似文献   

13.
This study assessed the impact of salt restriction on cardiac morphology and biochemistry and its effects on hemodynamic and renal variables in experimental hyperthyroidism. Four groups of male Wistar rats were used: control, hyperthyroid, and the same groups under low salt intake. Body weight, blood pressure (BP), and heart rate (HR) were recorded weekly for 4 weeks. Morphologic, metabolic, plasma, cardiac, and renal variables were also measured. Low salt intake decreased BP in T4-treated rats but not in controls. Low salt intake reduced relative left ventricular mass but increased absolute right ventricular weight and right ventricular weight/BW ratio in both control and hyperthyroid groups. Low salt intake increased Na+/H+ exchanger-1 (NHE-1) protein abundance in both ventricles in normal rats but not in hyperthyroid rats, independently of its effect on ventricular mass. Mammalian target of rapamycin (mTOR) protein abundance was not related to left or right ventricular mass in hyperthyroid or controls rats under normal or low salt conditions. Proteinuria was increased in hyperthyroid rats and attenuated by low salt intake. In this study, low salt intake produced an increase in right ventricular mass in normal and hyperthyroid rats. Changes in the left or right ventricular mass of control and hyperthyroid rats under low salt intake were not explained by the NHE-1 or mTOR protein abundance values observed. In hyperthyroid rats, low salt intake also slightly reduced BP and decreased HR, proteinuria, and water and sodium balances.  相似文献   

14.
We characterized hemodynamics and systolic and diastolic right ventricular (RV) function in relation to structural changes in the rat model of monocrotaline (MCT)-induced pulmonary hypertension. Rats were treated with MCT at 30 mg/kg body wt (MCT30, n = 15) and 80 mg/kg body wt (MCT80, n = 16) to induce compensated RV hypertrophy and RV failure, respectively. Saline-treated rats served as control (Cont, n = 13). After 4 wk, a pressure-conductance catheter was introduced into the RV to assess pressure-volume relations. Subsequently, rats were killed, hearts and lungs were rapidly dissected, and RV, left ventricle (LV), and interventricular septum (IVS) were weighed and analyzed histochemically. RV-to-(LV + IVS) weight ratio was 0.29 +/- 0.05 in Cont, 0.35 +/- 0.05 in MCT30, and 0.49 +/- 0.10 in MCT80 (P < 0.001 vs. Cont and MCT30) rats, confirming MCT-induced RV hypertrophy. RV ejection fraction was 49 +/- 6% in Cont, 40 +/- 12% in MCT30 (P < 0.05 vs. Cont), and 26 +/- 6% in MCT80 (P < 0.05 vs. Cont and MCT30) rats. In MCT30 rats, cardiac output was maintained, but RV volumes and filling pressures were significantly increased compared with Cont (all P < 0.05), indicating RV remodeling. In MCT80 rats, RV systolic pressure, volumes, and peak wall stress were further increased, and cardiac output was significantly decreased (all P < 0.05). However, RV end-systolic and end-diastolic stiffness were unchanged, consistent with the absence of interstitial fibrosis. MCT-induced pressure overload was associated with a dose-dependent development of RV hypertrophy. The most pronounced response to MCT was an overload-dependent increase of RV end-systolic and end-diastolic volumes, even under nonfailing conditions.  相似文献   

15.
Chronic beta-adrenoreceptor (beta-AR) activation increases left ventricular (LV) cavity size by promoting a rightward shift in LV diastolic pressure-volume (P-V) relations in association with increases in low-tensile strength myocardial (non-cross-linked) collagen concentrations. Because diastolic P-V relations are determined by chamber remodeling as well as by myocardial material properties (indexed by myocardial stiffness), both of which are associated with modifications in myocardial collagen cross-linking, we evaluated whether chamber remodeling or alterations in myocardial material properties govern beta-AR-mediated modifications in diastolic P-V relations. The effects of chronic administration of isoproterenol (Iso; 0.04 mg.kg(-1).day(-1) from 12 to 19 mo of age) to spontaneously hypertensive rats (SHRs) on LV cavity dimensions, LV diastolic P-V relations, myocardial collagen characteristics, myocardial stiffness constants [e.g., the slope of the LV diastolic stress-strain relation (k)], and LV chamber and myocardial systolic function were assessed. SHRs at 19 mo of age had normal LV diastolic P-V relations, marked myocardial fibrosis (using a pathological score), increased myocardial cross-linked (insoluble to cyanogen bromide digestion) type I and type III collagen concentrations, and enhanced myocardial k values. Iso administration to SHRs resulted in enlarged LV cavity dimensions mediated by a rightward shift in LV diastolic P-V relations, increased volume intercept of the LV diastolic P-V relation, decreased LV relative wall thickness despite a tendency to augment LV hypertrophy, and increased non-cross-linked type I and type III myocardial collagen concentrations. Iso administration resulted in reduced pump function without modification of intrinsic myocardial systolic function. However, despite increasing myocardial non-cross-linked concentrations, Iso failed to alter myocardial k in SHRs. These results suggest that beta-AR-mediated rightward shifts in LV diastolic P-V relations, which induce decreased pump function, are mediated by chamber remodeling but not by modifications in myocardial material properties.  相似文献   

16.
Hyperthyroidism has been reported to decrease heart antioxidant capacity and increase its susceptibility to in vitro oxidative stress. This may affect the heart response to ischemia-reperfusion, a condition that increases free radical production. We compared the functional recovery from in vitro ischemia-reperfusion (Langendorff) of hearts from euthyroid (E), hyperthyroid (H, ten daily intraperitoneal injections of T3, 10 microg/100g body weight), vitamin E-treated (VE, ten daily intramuscular injections, 20 mg/100g body weight) and hyperthyroid vitamin E-treated (HVE) rats. We also determined lipid peroxidation, tissue antioxidant capacity and the tissue capability to face an oxidative stress in vitro. A significant tachycardia was displayed during reperfusion following 20 min ischemia by the hyperthyroid hearts, together with a low recovery of left ventricular developed pressure (LVDP) and left ventricular dP/dt(max). When H hearts were paced at 300 beats/min, the functional recovery (LVDP and dP/dt(max)) was close to 100% and significantly higher than in E paced hearts. At the end of the ischemia-reperfusion protocol, myocardium antioxidant capacity was significantly lower, whereas lipid peroxidation and the susceptibility to in vitro oxidative stress were higher in the T3 treated (H) than in euthyroid rats. The in vitro tachycardic response, the reduction in the antioxidant capacity and the increase in lipid peroxidation were prevented by treatment of hyperthyroid rats with vitamin E (HVE). These results suggest that the tachycardic response to reperfusion following chronic T3 pretreatment was associated with the reduced capability of the heart to face oxidative stresses in hyperthyroidism.  相似文献   

17.
K Banovac  L Bzik  M Sekso  M Petek 《Endokrinologie》1978,71(2):159-163
In 14 hyperthyroid patient serum T4:rT3 ratio was significantly lower (399 +/- 20) than in the control subjects (572 +/- 20; p less than 0.001). A similar pattern was found for serum T3:rT3 ratio. In the hyperthyroid group the ratio was significantly lower (10.5 +/- 0.5) than in the control group (12.5 +/- 0.6; p less than 0.05). The data suggest that in hyperthyroidism the organism might shift conversion of T4 from biologically active T3 to poorly calorigenic rT3. It seems possible that the proportionately increased generation of rT3 than that of T3 may be a defence mechanism of the body, as it was found in systemic illnesses and starvation.  相似文献   

18.
Hyperthyroidism was induced by subcutaneous injections of L-thyroxine (T4) (0.5 mg/kg/day) for 3 days in order to investigate the effects of acute hyperthyroidism on the vasorelaxing responses to isoprenaline and acetylcholine in isolated rat aortae. In the aortae, there was no significant difference in isoprenaline-induced relaxation between hyperthyroid and control rats, however acetylcholine-induced relaxation was significantly greater in hyperthyroid rats than in control rats. N(G)-nitro-L-arginine (L-NOARG), an inhibitor of nitric oxide (NO) synthase, reduced isoprenaline- and acetylcholine-induced relaxations in both hyperthyroid and control rats and in the presence of L-NOARG no significant difference in the acetylcholine-induced relaxation was seen between the two groups of rats. Indomethacin, a cyclo-oxygenase inhibitor, had no significant influence on both isoprenaline- and acetylcholine-induced relaxations in both control and hyperthyroid rats. 17-Octadecynoic acid (17-ODYA), a cytochrome P-450 mono-oxygenase inhibitor, reduced the both isoprenaline- and acetylcholine-induced relaxation in both hyperthyroid and control rats, and acetylcholine-induced relaxation was still greater in hyperthyroid rats than in control rats. These results indicate that an acute hyperthyroidism significantly enhances muscarinic receptor- but not adrenoceptor-mediated relaxations of the aortae and L-NOARG abolished an enhancement by acute hyperthyroidism of muscarinic receptor-mediated relaxation, suggesting that the effects may be due to an alteration in muscarinic receptor-mediated NO systems of the aortae at early stage of hyperthyroidism.  相似文献   

19.
The importance of heart rate for left ventricular remodeling and prognosis after myocardial infarction is not known. We examined the contribution of heart rate reduction by zatebradine, a direct sinus node inhibitor without negative inotropic effects on left ventricular function and dilatation, on mortality, energy metabolism, and neurohormonal changes in rats with experimental myocardial infarction (MI). Thirty minutes after left coronary artery ligation or sham operation, the rats were randomized to receive either placebo or zatebradine (100 mg x kg(-1) x day(-1) per gavage) continued for 8 wk. Mortality during 8 wk was 33.3% in the placebo and 23.0% in the zatebradine group (P < 0.05); MI size was 36 +/- 2% and 30 +/- 1% (means +/- SE, P < 0.05), respectively. Zatebradine improved stroke volume index in all treated rats but increased left ventricular volume in rats with small MI (2.43 +/- 0.10 vs. 1.81 +/- 0.10 ml/kg, P < 0.05) but not in rats with large MI (2.34 +/- 0.09 vs. 2.35 +/- 0.11 ml/kg, not significant). Zatebradine reduced left and right ventricular norepinephrine and increased left and right ventricular 3,4-dihydroxyphenyl ethylene glycol-to-norepinephrine ratio suggesting aggravation of cardiac sympathetic activation by zatebradine after MI. Creatine kinase and lactate dehydrogenase isoenzymes in rats with MI remained unchanged by zatebradine. Lowering heart rate per se reduces mortality and MI size in this model but induces adverse effects on left ventricular remodeling in rats with small MI.  相似文献   

20.
目的: 评价抗逆转录病毒药对孕育期雌性大鼠心血管功能及某些生化指标的影响。方法: SD大鼠9周龄雌鼠19只、10周龄雄鼠6只,9只/10只雌鼠与3只雄鼠合1笼,共2笼,分为正常对照组(CON)、高效抗逆转录病毒治疗组(HARRT)。其中CON组雌性大鼠每天早、晚生理盐水 (10 ml/kg)灌胃,HARRT组雌性大鼠灌等容积抗逆转录病毒药(AZT 31.25 mg/kg +3TC 15.63 mg/kg +LPV/r (41.67/10.42) mg/kg),连续3个月。记录雌性大鼠体重、存活情况;检测超声心动图,多导生理记录仪检测动脉血压、心脏血流动力学参数;相应试剂盒检测血糖、血脂四项、心肌酶及肝酶;Masson染色及透射电镜分别观察心肌胶原纤维和心肌细胞超微结构。结果: CON组雌性大鼠均存活(9/9),HARRT组雌性大鼠存活6只(6/10);与CON组比较,HAART组雌性大鼠体重减少(P< 0.01);LVDd、IVST、LVPWT、LAD增加(P<0.05);动脉舒张压增加(P<0.05)、LVP +dP/dtmax减少(P<0.01);TG减少、Glu增加(P<0.05)、CK减少(P<0.01)、GOT减少(P<0.05);心肌组织胶原纤维增多,心肌细胞超微结构异常。结论: 抗逆转录病毒药可导致孕育期雌性大鼠心血管病变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号