首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acid blue-15, a complex and resonance-stabilized triphenylmethane (TPM) textile dye, resistant to transformation, was decolorized/degraded in an up-flow immobilized cell bioreactor. A consortium comprised of isolates belonging to Bacillus sp., Alcaligenes sp. and Aeromonas sp. formed a multispecies biofilm on refractory brick pieces used as support material. The TPM dye was degraded to simple metabolic intermediates in the bioreactor with 94% decolorization at a flow rate of 4 ml h–1.  相似文献   

2.
Summary Soil samples collected from contaminated sites of Vatva, Gujarat, India were studied for screening and isolation of organisms capable of decolourizing textile dyes. A bacterial consortium RVM 11.1 was selected on the basis of rapid dye decolourization. Reactive Violet 5 (RV 5) was used as model dye. The consortium exhibited 94% decolourization ability within 37 h under a wide pH range from 6.5 to 8.5 and temperature ranging from 25 to 40 °C. The bacterial consortium was able to grow and decolourize RV5 under static conditions in the presence of glucose and yeast extract and also showed an ability to decolourize in the presence of starch in place of glucose. Maximum decolourization efficiency was observed at 200 ppm (mg/l) concentration of RV 5. Bacterial consortium RVM11.1 had the ability to decolourize 10 different dyes tested. The transformation and degradation products after decolourization were examined by HPTLC.  相似文献   

3.
Aerobic mixed bacterial culture comprised of five isolates (Bacillus vallismortis, B. pumilus, B. cereus, B. subtilis and B. megaterium) identified by 16srDNA analysis was developed from wastewater samples from the aeration tank of an effluent treatment plant of a textile and dyeing industry and evaluated for its ability to decolorize azo dye Direct Red 28 in an up-flow immobilized packed bed bioreactor using marble chips as support matrix. The bioreactor was operated under two parameters: an aeration rate of 0.4 and 0.6 mmol/min at a flow rate of 60, 90 and 120 ml/h, respectively. At a constant aeration rate of 0.4 mmol/min and with flow rates of 60, 90 and 120 ml/h, optimum decolorization of 91, 75 and 72% was observed, while at an aeration rate of 0.6 mmol/min and flow rates of 60, 90 and 120 ml/h, optimum decolorization of 93, 78 and 72% was observed over 10 days. The study concluded that across the two aeration rates and the respective flow rates, the higher aeration rate of 0.6 mmol/min along with a flow rate of 60 ml/h was best suited to decolorize Direct Red 28 in the packed bed bioreactor. Spectral changes of the input and output of the bioreactor by UV–visible spectroscopy indicated decolorization of the dye solution by degradation in addition to the visual observation of the biosorption process.  相似文献   

4.
Summary An upflow anaerobic filter was developed with a microbial consortium, consisting predominantly of Alcaligenes faecalis and Commamonas acidovorans, immobilized on a gravel substratum. Remazol Black B, a commercially important textile dye, was decolourised by >95% within 48 h (operating conditions: initial dye concentration, 0.5g/l; pH 7.0; flow rate 0.1 l/hour; room temperature fluctuated between 12 and 20° C)  相似文献   

5.
6.
The bacterial consortium MPD-M, isolated from sediment associated with Colombian mangrove roots, was effective in the treatment of hydrocarbons in water with salinities varying from 0 to 180 g L(-1). Where the salinity of the culture medium surpassed 20 g L(-1), its effectiveness increased when the cells were immobilized on polypropylene fibers. Over the range of salinity evaluated, the immobilized cells significantly enhanced the biodegradation rate of crude oil compared with free-living cells, especially with increasing salinity in the culture medium. Contrary to that observed in free cell systems, the bacterial consortium MPD-M was highly stable in immobilized systems and it was not greatly affected by increments in salinity. Biodegradation was evident even at the highest salinity evaluated (180 g L(-1)), where biodegradation was between 4 and 7 times higher with immobilized cells compared to free cells. The biodegradation of pristane (PR) and phytane (PH) and of the aromatic fraction was also increased using cells immobilized on polypropylene fibers.  相似文献   

7.
An aerobic microbial consortium constructed by the combination of Rhodotorula mucilaginosa Z1, Streptomyces albidoflavus Z2 and Micrococcus luteus Z3 was immobilized in polyurethane foam and its ability to degrade nitrobenzene was investigated. Batch experimental results showed that polyurethane-foam-immobilized cells (PFIC) more efficiently degrade 200–400 mg l−1 nitrobenzene than freely suspended cells (FSC). Kinetics of nitrobenzene degradation by PFIC was well described by the Andrews equation. Compared with FSC, PFIC exhibited better reusability (over 100 times) and tolerated higher shock-loadings of nitrobenzene (1,000 mg l−1). Moreover, In the presence of salinity (≤5% NaCl, w/v), phenol (≤150 mg l−1) and aniline (≤50 mg l−1), respectively, degradation efficiency of nitrobenzene by PFIC reached over 95%. Even in the presence of both 100 mg l−1 phenol and 50 mg l−1 aniline, over 75% nitrobenzene was removed by PFIC in 36 h. Therefore, the immobilization of the defined consortium in polyurethane foam has application potential for removing nitrobenzene in industrial wastewater treatment system.  相似文献   

8.
Plastic materials, particularly polyethylene, are the potential source of environmental pollution. In the present study, a fungal strain was isolated from plastic waste dumpsites capable of adhering to high-density polyethylene (HDPE) surface. The fungal strain was identified as Aspergillus niger (ITCC no. 6052). A visible increase in the growth of the fungi was observed on the surface of the polyethylene when cultured in minimal medium at 30°C and 120 rpm, for 1 month. Approximately 3.44% reduction (gravimetrically) in mass and 61% reduction in tensile strength of polyethylene was observed after 1 month of incubation with fungal isolate. Scanning electron microscope analysis showed hyphael penetration and cracks on the surface of polyethylene. A thick network of fungal hyphae forming a biofilm was also observed on the surface of the plastic pieces. The efficient biofilm formation on polyethylene surface by Aspergillus niger (ITCC no. 6052) is attributed to its high cell surface hydrophobicity. This study indicated that Aspergillus niger (ITCC no. 6052) has ability to degrade thermally oxidized polyethylene.  相似文献   

9.
10.
11.
A bacterial consortium that anaerobically mineralized phenoxyacetate, with transient production of phenol as an intermediate, was obtained from a methanogenic aquifer site near the Norman, OK municipal landfill. This consortium was able to convert the eight halogenated chlorophenoxyacetates tested to the corresponding chlorophenols. The chlorophenols were not subsequently metabolized. The addition of reduced substrates increased the rate of degradation of all chlorophenoxyacetates, with 78% of mono- and di-chlorinated substrates being transformed to chlorophenols in butyrate-amended cultures, compared to less than 37% transformed in unsupplemented cultures. Butyrate increased the transformation of 2,4,5-trichlorophenoxyacetate from 10% to 20%. An experiment evaluating the effects of several compounds on the side-chain cleavage reaction of 3-chlorophenoxyacetate showed that addition of compounds with readily act as hydrogen donors (butyrate, crotonate, ethanol, propionate, and hydrogen) resulted in 2 to 5 times the amount of 3-chlorophenoxyacetate transformed compared to controls with no amendment, formate had a slight stimulatory effect, and acetate and methanol had no effect. Butyrate addition also increased the rate of phenoxyacetate degradation, resulting in transient phenol accumulation not observed in butyrate-unamended controls. These results support the hypothesis that the side-chain cleavage of phenoxyacetate is a reductive process that is stimulated by the oxidation of reduced cosubstrates.  相似文献   

12.
An enzymatic process using a packed bed bioreactor with recirculation was developed for the scale-up synthesis of 2-ethylhexyl palmitate with a lipase from Candida sp. 99–125 immobilized on a fabric membrane by natural attachment to the membrane surface. Esterification was effectively performed by circulating the reaction mixture between a packed bed column and a substrate container. A maximum esterification yield of 98% was obtained. Adding molecular sieves and drying the immobilized lipase both decreased the water content at the reactor outlet and around the enzyme, which led to an increase in the rate of esterification. The long-term stability of the reactor was tested by continuing the reaction for 30 batches (over 300 h) with an average esterification yield of about 95%. This immobilized lipase bioreactor is scalable and is thus suitable for industrial production of 2-ethylhexyl palmitate.  相似文献   

13.
A high-performance biocatalyst in the form of encapsulated cells of Gluconobacter oxydans have been developed for production of phenylacetic acid (PAA) as a natural flavor component. Polyelectrolyte complex (PEC) capsules consisting of sodium alginate, cellulose sulfate, poly(methylene-co-guanidine), CaCl2, and NaCl were used for highly controlled and mild encapsulation of cells. Utilization of encapsulated G. oxydans cells was a significant improvement on existing data on operational stability of cells and cumulative product concentration during biocatalytic production of PAA from 2-phenylethanol. Concerning operational stability, encapsulated cells were active over 12 cycles with a high biotransformation rate, while free cells were inactive after 7 cycles of use. The biocatalytic properties of encapsulated G. oxydans were tested in a bubble column reactor over 7 days with a final cumulative product concentration of 25 g/L. High cell viability (90%) was observed within PEC capsules by confocal laser scanning microscopy, performed before and after repetitive PAA production in the bubble column reactor. The surface microstructure of fully hydrated capsules with and without G. oxydans cells was investigated and compared using an environmental scanning electron microscope.  相似文献   

14.
15.
Wang C  Li Y 《Biotechnology letters》2007,29(9):1353-1356
Granular activated carbon (GAC) was incorporated into hollow fiber membrane bioreactors for the biodegradation of 1,000 mg phenol l−1 through immobilization of Pseudomonas putida. The phenol was removed within 25 h in the hybrid bioreactor, comparing with 31 h for a GAC-free bioreactor. Sorption, biodegradation, desorption, and bioregeneration were four steps for the phenol removal during batch operation.  相似文献   

16.
A system was developed to continuously acidify and inoculate skim milk for the production of fresh cheese. Four strains of mesophilic lactic acid bacteria were entrapped separately in κ -carrageenan/locust bean gum gel beads and used in a stirred bioreactor operated at 26°C with a 25% (v/v) gel load. The pH in the reactor was controlled at 6.0 by adding fresh milk using proportional integrated derived regulation. The bioreactor was operated during 8-h daily cycles for up to 7 weeks with different milks (heat treatment, dry matter content) and differing starting procedures. The heat treatment of the milk was an important factor for process performance: a dilution rate increase of 57% and an inoculation level decrease of 63% were observed with sterilized UHT skim milk (142°C – 7.5 s) compared with pasteurized skim milk (72°C – 15 s). The dry matter content of the milk (8–13% w/w) had no detectable effect on these parameters. A convenient starting procedure of the system was tested; steady-state was reached in less than 40 min following an interruption period of 16–60 h. These results combined with our published data on process performance show the feasibility of using an integrated immobilized cell bioreactor for milk prefermentation in cheese manufacture. Received 10 June 1996/ Accepted in revised form 15 October 1996  相似文献   

17.
This article reports studies on a continuous pulsed plate bioreactor (PPBR) with the cells of Pseudomonas desmolyticum (NCIM2112) immobilized on granular activated carbon (GAC) used as a biofilm reactor for biodegradation of phenol. Almost complete removal of 200 ppm phenol could be achieved in this bioreactor. Biofilm structure and characteristics are influenced by hydrodynamic and shear conditions in bioreactors. In this article, the effect of shear stress induced by frequency of pulsation on biofilm characteristics during the startup period in the PPBR is reported. The startup time decreased with the increase in frequency of pulsation. The formation of biofilm in PPBR was found to have three phases: accumulation, compaction, and plateau. The effect of frequency on production of exoploymeric substances (EPS) such as, protein, carbohydrate, and humic substance is reported. An increase in shear stress induced by the frequency of pulsation increased the production of exopolymeric substances in the biofilm during startup of the bioreactor. Increase in shear stress caused a decrease in biofilm thickness and an increase in dry density of the biofilm. Increase in shear stress resulted in a smoother and thinner biofilm surface with more compact and dense structure.  相似文献   

18.
A combination of fluorescence in situ hybridization (FISH), microprofiles, and denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rDNA fragments followed by hybridization analysis with specific probes was applied to investigate successional development of sulfate-reducing bacteria (SRB) community structure and in situ sulfide production activity within an activated sludge immobilized agar gel film. In this model biofilm system, since biases arising from biofilm heterogeneity can be ignored, the population dynamics of SRB in the agar gel is directly related to physiological capability and in situ activity of SRB. Microelectrode measurements showed that an anoxic zone was already developed at the beginning (0 day), a first sulfide production of 0.054 mumol H2S m(-2) x s(-1) was detected during the first week, and the rate increased gradually to 0.221 mumol H2S m(-2) x s(-1) in the fifth week. The most active sulfide production zone moved upward to the chemocline and intensified with time to form a narrow zone with high volumetric sulfide production rates. This result coincided with the shift of the spatial distributions of SRB populations determined by FISH. In situ hybridization with probe SRB385 for mainly general SRB of the delta Proteobacteria plus some gram-positive bacteria and probe 660 for Desulfobulbus indicated that the most abundant populations of SRB were primarily restricted to near the oxic/anoxic interface (chemocline). A close observation of the development of the vertical distributions of SRB populations revealed that the cell numbers of Desulfobulbus tripled (from 0.5 x 10(8) to 1.5 x 10(8) cells cm(-3)) near the oxic/anoxic interface. Similar growth (from 1.0 x10(8) to 4.5 x 10(8) cells cm(-3)) of Desulfovibrio-like SRB that hybridized with probe SRB385 was observed. PCR-DGGE followed by hybridization analysis revealed that one Desulfobulbus strain was detected from the beginning, and another strain appeared after 1 week, coinciding with the first detected sulfide production. In addition, three strains hybridizing with probe 687 (possibly Desulfovibrio) were also dominant SRB in the agar gel.  相似文献   

19.
Huang J  Cai J  Wang J  Zhu X  Huang L  Yang ST  Xu Z 《Bioresource technology》2011,102(4):3923-3926
Butyric acid is an important specialty chemical with wide industrial applications. The feasible large-scale fermentation for the economical production of butyric acid requires low-cost substrate and efficient process. In the present study, butyric acid production by immobilized Clostridium tyrobutyricum was successfully performed in a fibrous-bed bioreactor using Jerusalem artichoke as the substrate. Repeated-batch fermentation was carried out to produce butyric acid with a high butyrate yield (0.44 g/g), high productivity (2.75 g/L/h) and a butyrate concentration of 27.5 g/L. Furthermore, fed-batch fermentation using sulfuric acid pretreated Jerusalem artichoke hydrolysate resulted in a high butyric acid concentration of 60.4 g/L, with the yield of 0.38 g/g and the selectivity of ∼85.1 (85.1 g butyric acid/g acetic acid). Thus, the production of butyric acid from Jerusalem artichoke on a commercial scale could be achieved based on the system developed in this work.  相似文献   

20.
The dynamics of the bacterial populations in an up-flow anaerobic packed bed system (UAPB), applied in acid mine drainage treatment using wine wastes as carbon and nutrients source was elucidated by temperature gradient gel electrophoresis (TGGE) analysis. Moreover, TGGE fingerprints of the bacterial communities developed in a UAPB fed with wine wastes and a UAPB fed with pure ethanol were compared. TGGE fingerprinting and phylogenetic analysis showed that the composition of the community in the UAPB fed with wine wastes remained stable during whole time of operation and its bacterial diversity was higher. The bacterial community of the UAPB fed with wine wastes was composed by bacteria affiliated with Desulfovibrio, Clostridium, Citrobacter and Cronobacter genera and with Bacteroidales order, sp. The dominant community developed in the UAPB fed with ethanol was composed by bacteria affiliated with Desulfovibrio sp. The presence of several bacterial groups in the bioreactor fed with wine wastes suggests a synergistic interaction between the different populations. Syntrophic interaction may be the key factor for the utilization of wine wastes, a complex organic substrate, as carbon and electron source for sulphate reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号