首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cultivation of unculturable soil bacteria   总被引:2,自引:0,他引:2  
Despite the abundance of bacterial species in soil, more than 99% of these species cannot be cultured by traditional techniques. In addition, the less than 1% of bacteria that can be cultured are not representative of the total phylogenetic diversity. Hence, identifying novel species and their new functions is still an important task for all microbiologists. Cultivating techniques have played an important role in identifying new species but are still low-throughput processes. This review discusses the issues surrounding cultivation, including achievements, limitations, challenges, and future directions.  相似文献   

2.
One of the so called 'species problems' is that no universal concept exists. There is a tendency among microbiologists to criticize the hitherto devised concept. It is considered by some researchers as being too conservative and not suitable to be compared with those for eukaryotes. However, such problem is not only restricted to prokaryotes, but among other taxonomies comparisons seem to be impossible. As it is argued, the underlying cause to this problem is the reductionistic and monistic use of taxonomy. Analyzing the more than 22 devised concepts it seems possible to achieve a universal species concept. However, this might not be pragmatic. For the time being, a pluralistic sense of the species concept might be accepted, and one will have to recognize that any comparison among different taxonomies will be difficult.  相似文献   

3.
Fructooligosaccharides (FOS) are prebiotic substances found in several vegetable or natural foods. The main commercial production of FOS comes from enzymatic transformation of sucrose by the microbial enzyme fructosyltransferase. The development of more efficient enzymes, with high activity and stability, is required and this has attracted the interest of biotechnologists and microbiologists with production by several microorganisms being studied. This article reviews and discusses FOS chemical structure, enzyme characteristics, the nomenclature, producer microorganisms and enzyme production both in solid state fermentation and submerged cultivation.  相似文献   

4.
Do bacteria have genes for genetic exchange? The idea that the bacterial processes that cause genetic exchange exist because of natural selection for this process is shared by almost all microbiologists and population geneticists. However, this assumption has been perpetuated by generations of biology, microbiology and genetics textbooks without ever being critically examined.  相似文献   

5.
What does the future hold for clinical microbiology?   总被引:2,自引:0,他引:2  
In the past decade, clinical microbiology laboratories have undergone important changes with the introduction of molecular biology techniques and laboratory automation. In the future, there will be a need for more rapid diagnoses, increased standardization of testing and greater adaptability to cope with new threats from infectious microorganisms, such as agents of bioterrorism and emerging pathogens. The combination of the new tools that are now being developed in research laboratories, the general reorganization of clinical laboratories and improved communication between physicians and clinical microbiologists should lead to profound changes in the way that clinical microbiologists work.  相似文献   

6.
7.
Screening of microbial natural products continues to represent an important route to the discovery of novel bioactive compounds for the development of new therapeutic agents, and actinomycetes are still the major producers of biopharmaceuticals. Selective isolation of bioactive actinomycete species, in particular the rare ones, has thus become a target for industrial microbiologists. In this context, bacteriophages have proven to be useful tools as (1) naturally present indicators of under-represented or rare actinomycete taxa in environmental samples, (2) indicators of the relatedness of bioactive taxa in target-directed search and discovery, (3) de-selection agents of unwanted taxa on isolation plates in target-specific search for rare actinomycete taxa, (4) tools in screening assays for specific targets. Against this background, a number of case studies are presented to illustrate the use of bacteriophages as tools in actinomycete-origin bioactive compound search and discovery programs.  相似文献   

8.
The practice of classifying organisms into hierarchical groups originated with Aristotle and was codified into nearly immutable biological law by Linnaeus. The heart of taxonomy is the biological species, which forms the foundation for higher levels of classification. Whereas species have long been established among sexual eukaryotes, achieving a meaningful species concept for prokaryotes has been an onerous task and has proven exceedingly difficult for describing viruses and bacteriophages. Moreover, the assembly of viral "species" into higher-order taxonomic groupings has been even more tenuous, since these groupings were based initially on limited numbers of morphological features and more recently on overall genomic similarities. The wealth of nucleotide sequence information that catalyzed a revolution in the taxonomy of free-living organisms necessitates a reevaluation of the concept of viral species, genera, families, and higher levels of classification. Just as microbiologists discarded dubious morphological traits in favor of more accurate molecular yardsticks of evolutionary change, virologists can gain new insight into viral evolution through the rigorous analyses afforded by the molecular phylogenetics of viral genes. For bacteriophages, such dissections of genomic sequences reveal fundamental flaws in the Linnaean paradigm that necessitate a new view of viral evolution, classification, and taxonomy.  相似文献   

9.
Evolutionists strive to learn about the natural historical process that gave rise to various taxa, while also attempting to classify them efficiently and make generalizations about them. The quantitative importance of lateral gene transfer inferred from genomic data, although well acknowledged by microbiologists, is in conflict with the conceptual foundations of the traditional phylogenetic system erected to achieve these goals. To provide a true account of microbial evolution, we suggest developing an alternative conception of natural groups and introduce a new notion--the composite evolutionary unit. Furthermore, we argue that a comprehensive database containing overlapping taxonomical groups would constitute a step forward regarding the classification of microbes in the presence of lateral gene transfer.  相似文献   

10.
A total of 739 taiga ticks of ixodes persulcatus species, obtained in the recreational zone of St. Petersburg, were studied for the presence of Babesia sp. with polymerase chain reaction. All these ticks underwent the preliminary examination for the presence of Borrelia (3 species), Ehrlichia (2 species) and tick-borne encephalitis (TBE) virus. In 7 cases Babesia were detected among 413 ticks containing other pathogens. Among 326 ticks no Babesia were detected, as well as no other pathogens. All ticks having Babesia were also found to contain Borrelia species: B. afzelii, B. garinii, or both (1 case). In one female tick, in addition to Babesia, also B. garinii and TBE virus were determined. The data thus obtained should draw special attention not only of parasitologists, epidemiologists and microbiologists studying ticks obtained from natural sources, but also of clinicists who should consider the possibility of mixed infection, when one infection may mask the presence of some other infection, in particular babesiosis. Due to rare occurrence of Babesia in ticks and the presence of mixed infection difficulties may arise in the detection of Babesia.  相似文献   

11.
The utilization of natural microbial diversity in biotechnology is hindered by our inability to culture the vast majority of microorganisms and the observation that laboratory engineered bacteria rarely function in the wild. It is now clear that an understanding of the community structure, function and evolution of bacteria in their natural environments is required to meet the promise of microbial biotechnology. To meet these new challenges, microbiologists are applying the tools of genomics and related high-throughput technologies to both cultured microbes and environmental samples. This work will lead to new views on ecosystems and biological function together with the biotechnology enabled by this science.  相似文献   

12.
Classification of microorganisms on the basis of traditional microbiological methods (morphological, physiological and biochemical) creates a blurred image about their taxonomic status and thus needs further clarification. It should be based on a more pragmatic approach of deploying a number of methods for the complete characterization of microbes. Hence, the methods now employed for bacterial systematics include, the complete 16S rRNA gene sequencing and its comparative analysis by phylogenetic trees, DNA-DNA hybridization studies with related organisms, analyses of molecular markers and signature pattern(s), biochemical assays, physiological and morphological tests. Collectively these genotypic, chemotaxonomic and phenotypic methods for determining taxonomic position of microbes constitute what is known as the ‘polyphasic approach’ for bacterial systematics. This approach is currently the most popular choice for classifying bacteria and several microbes, which were previously placed under invalid taxa have now been resolved into new genera and species. This has been possible owing to rapid development in molecular biological techniques, automation of DNA sequencing coupled with advances in bioinformatic tools and access to sequence databases. Several DNA-based typing methods are known; these provide information for delineating bacteria into different genera and species and have the potential to resolve differences among the strains of a species. Therefore, newly isolated strains must be classified on the basis of the polyphasic approach. Also previously classified organisms, as and when required, can be reclassified on this ground in order to obtain information about their accurate position in the microbial world. Thus, current techniques enable microbiologists to decipher the natural phylogenetic relationships between microbes.  相似文献   

13.
A recent analysis revealed that most environmental microbiologists neglect replication in their science (Prosser, 2010). Of all peer-reviewed papers published during 2009 in the field's leading journals, slightly more than 70% lacked replication when it came to analyzing microbial community data. The paucity of replication is viewed as an 'endemic' and 'embarrassing' problem that amounts to 'bad science', or worse yet, as the title suggests, lying (Prosser, 2010). Although replication is an important component of experimental design, it is possible to do good science without replication. There are various quantitative techniques - some old, some new - that, when used properly, will allow environmental microbiologists to make strong statistical conclusions from experimental and comparative data. Here, I provide examples where unreplicated data can be used to test hypotheses and yield novel information in a statistically robust manner.  相似文献   

14.
In recent years, increasing evidence has been collated on the contributions of fungal species, particularly Candida, to medical device infections. Fungal species can form biofilms by themselves or by participating in polymicrobial biofilms with bacteria. Thus, there is a clear need for effective preventative measures, such as thin coatings that can be applied onto medical devices to stop the attachment, proliferation, and formation of device-associated biofilms.However, fungi being eukaryotes, the challenge is greater than for bacterial infections because antifungal agents are often toxic towards eukaryotic host cells. Whilst there is extensive literature on antibacterial coatings, a far lesser body of literature exists on surfaces or coatings that prevent attachment and biofilm formation on medical devices by fungal pathogens. Here we review strategies for the design and fabrication of medical devices with antifungal surfaces. We also survey the microbiology literature on fundamental mechanisms by which fungi attach and spread on natural and synthetic surfaces. Research in this field requires close collaboration between biomaterials scientists, microbiologists and clinicians; we consider progress in the molecular understanding of fungal recognition of, and attachment to, suitable surfaces, and of ensuing metabolic changes, to be essential for designing rational approaches towards effective antifungal coatings, rather than empirical trial of coatings.  相似文献   

15.
Developments in medical intervention and the increasing population of patients with immunodeficiencies and transient or long-term immunosuppression have increased the list of yeast species that can cause disease. Candida dubliniensis is a novel species with close genetic relatedness to C. albicans. The two species share many common physiological and biochemical properties thus making their distinction cumbrous. A rapid and inexpensive way to presumptively differentiate between the two species, having previously performed a germ tube test, is the ability of C. dubliniensis to reduce the tetrazolium salt and it is reported for the first time. Microbiological information about new and emerging yeast pathogens, including rapid means for their identification, equips medical microbiologists with the means to identify and physicians to treat effectively infections attributed to unusual yeasts.  相似文献   

16.
17.
For over a century microbiologists and immunologist have categorized microorganisms as pathogenic or non-pathogenic species or genera. This definition, clearly relevant at the strain and species level for most bacteria, where differences in virulence between strains of a particular species are well known, has never been probed at the strain level in fungal species. Here, we tested the immune reactivity and the pathogenic potential of a collection of strains from Aspergillus spp, a fungus that is generally considered pathogenic in immuno-compromised hosts. Our results show a wide strain-dependent variation of the immune response elicited indicating that different isolates possess diverse virulence and infectivity. Thus, the definition of markers of inflammation or pathogenicity cannot be generalized. The profound understanding of the molecular mechanisms subtending the different immune responses will result solely from the comparative study of strains with extremely diverse properties.  相似文献   

18.
Since 1881 when Englemann reported aerotaxis in bacteria, an understanding of the molecular nature of the signal transduction remains a daring goal for microbiologists. This short review discusses known facts and recent advances in the field including the discovery of the flavoprotein receptor which drives Escherichia coli towards oxygen. Possible mechanisms of oxygen sensing in various bacterial species are considered in connection with the existing, often fragmental, data on phototaxis, redox taxis and taxis repellent effect of the reactive oxygen species (ROS).  相似文献   

19.
Cohan FM  Perry EB 《Current biology : CB》2007,17(10):R373-R386
Bacterial systematists face unique challenges when trying to identify ecologically meaningful units of biological diversity. Whereas plant and animal systematists are guided by a theory-based concept of species, microbiologists have yet to agree upon a set of ecological and evolutionary properties that will serve to define a bacterial species. Advances in molecular techniques have given us a glimpse of the tremendous diversity present within the microbial world, but significant work remains to be done in order to understand the ecological and evolutionary dynamics that can account for the origin, maintenance, and distribution of that diversity. We have developed a conceptual framework that uses ecological and evolutionary theory to identify the DNA sequence clusters most likely corresponding to the fundamental units of bacterial diversity. Taking into account diverse models of bacterial evolution, we argue that bacterial systematics should seek to identify ecologically distinct groups with evidence of a history of coexistence, as based on interpretation of sequence clusters. This would establish a theory-based species unit that holds the dynamic properties broadly attributed to species outside of microbiology.  相似文献   

20.
Status of the microbial census.   总被引:8,自引:0,他引:8  
Over the past 20 years, more than 78,000 16S rRNA gene sequences have been deposited in GenBank and the Ribosomal Database Project, making the 16S rRNA gene the most widely studied gene for reconstructing bacterial phylogeny. While there is a general appreciation that these sequences are largely unique and derived from diverse species of bacteria, there has not been a quantitative attempt to describe the extent of sequencing efforts to date. We constructed rarefaction curves for each bacterial phylum and for the entire bacterial domain to assess the current state of sampling and the relative taxonomic richness of each phylum. This analysis quantifies the general sense among microbiologists that we are a long way from a complete census of the bacteria on Earth. Moreover, the analysis indicates that current sampling strategies might not be the most effective ones to describe novel diversity because there remain numerous phyla that are globally distributed yet poorly sampled. Based on the current level of sampling, it is not possible to estimate the total number of bacterial species on Earth, but the minimum species richness is 35,498. Considering previous global species richness estimates of 10(7) to 10(9), we are certain that this estimate will increase with additional sequencing efforts. The data support previous calls for extensive surveys of multiple chemically disparate environments and of specific phylogenetic groups to advance the census most rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号