首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Wu  R W Hyman    N Davidson 《Nucleic acids research》1979,6(11):3427-3441
Exonuclease digestion experiments have suggested that there is a protein(s) bound close to one or both ends of herpes simplex virus-1 (HSV) DNA. The existence of such bound proteins has been positively demonstrated and their positions on the HSV genome determined by application of a newly developed method for electron microscopic mapping of proteins bound to nucleic acids. Purified HSV DNA was treated with dinitrofluorobenzene under conditions that covalently attach the dinitrophenyl (DNP) group to the proteins in a protein-nucleic acid complex. The HSV DNA-protein-(DNP)n complex was treated with rabbit anti-DNP IgG, and, in some cases, additionally treated with monovalent Fab fragments of goat anti-rabbit IgG, and mounted for examination in the electron microscope. Electron opaque dots representing the protein-(DNP)n-(IgG)m complex were seen on the HSV DNA. Direct measurements of the positions of the protein, as well as partial denaturation mapping, indicate that there are four positions for protein bound to HSV DNA: two near but not at the two ends and two at sites corresponding to the internal inverted repeats of the ends. These results suggest that there is a specific protein binding sequence within the direct terminal repeat of HSV DNA. The previous observation that HSV DNA is more sensitive to digestion by a 3' than by a 5' exonuclease then indicates that the bound protein(s) is more intimately associated with one strand of the specific sequence than with the complementary strand.  相似文献   

2.
A new method for preparation of nucleic acid specimens for electron microscopy has been adapted to study the interaction of proteins with DNA. Both a detergent and a basic protein are added to the DNA-protein solution before spreading on a hypophase containing 0.2 m ammonium acetate. This method has been tested using T7 DNA and Escherichia coli RNA polymerase. Specifically bound enzyme molecules were clearly visible on the well extended DNA molecules; the binding sites were located at 0.59, 1.24, 1.57, and 1.86% of the total length of T7 DNA. Under carefully controlled conditions, 40–85% of the DNA molecules specifically bound at least one enzyme molecule.  相似文献   

3.
Newly transcribed heterogeneous nuclear RNA (hnRNA) in the eucaryote cell nucleus is bound by proteins, giving rise to large ribonucleoprotein (RNP) fibrils with an inherent substructure consisting largely of relatively homogeneous approximately 20-nm 30S particles, which contain core polypeptides of 34,000-38,000 mol wt. To determine whether this group of proteins was sufficient for the assembly of the native beaded nucleoprotein structure, we dissociated 30S hnRNP purified from mouse ascites cells into their component proteins and RNA by treatment with the ionic detergent sodium deoxycholate and then reconstituted this complex by addition of Triton X-100 to sequester the deoxycholate. Dissociation and reassembly were assayed by sucrose gradient centrifugation, monitoring UV absorbance, protein composition, and radiolabeled nucleic acid, and by electron microscopy. Endogenous RNA was digested and reassembly of RNP complexes carried out with equivalent amounts of exogenous RNA or single-stranded DNA. These complexes are composed exclusively of groups of n 30S subunits, as determined by sucrose gradient and electron microscope analysis, where n is the length of the added nucleic acid divided by the length of nucleic acid bound by one native 30S complex (about 1,000 nucleotides). When the nucleic acid: protein stoichiometry in the reconstitution mixture was varied, only complexes composed of 30S subunits were formed; excess protein or nucleic acid remained unbound. These results strongly suggest that core proteins determine the basic structural properties of 30S subunits and hence of hnRNP. In vitro construction of RNP complexes using model nucleic acid molecules should prove useful to the further study of the processing of mRNA.  相似文献   

4.
The copper complex of the antituberculous drug, insonicotinic acid hydrazide (INH), inhibits the RNA-dependent DNA polymerase of Rous sarcoma virus and inactivates its ability to malignantly transform chick embryo cells. The INH-copper complex binds to the 70S genome RNA of Rous sarcoma virus (RSV), which may account for its ability to inhibit the RNA-dependent DNA polymerase. The complex binds RNA more effectively than DNA in contrast to M-IBT-copper complexes, which bind both types of nucleic acids equally. The homopolymers, poly rA and poly rU, are bound by the INH-copper complex to a greater extent than poly rC. Isonicotinic acid hydrazide alone and CuSO4 alone bind neither DNA, RNA, poly (rA), poly (rU), nor poly (rC). However, CuSO4 alone binds poly (rI); INH alone does not. In addition to viral DNA synthesis, chick-embryo cell DNA synthesis is inhibited by the INH-copper complex. The extent of inhibition of cellular DNA synthesis is greater than that of cellular RNA and protein synthesis. No selective inhibition of transformation in cells previously infected with Rous sarcoma virus is observed.  相似文献   

5.
Effect of 2,4-dinitrophenol (DNP) was studied onNigella sativa to note the changes in mitosis, DNA, RNA and protein synthesis. The chemical affected division frequency considerably and chromosomal abnormalities like sticky bridge, fragmentation, micronucleietc. were recorded. By using precursors of nucleic acid and protein synthesis, it was found that DNP also inhibited DNA, RNA and protein synthesis. The decrease in division frequency can be correlated with the DNA synthesis.  相似文献   

6.
Yunhui Peng  Emil Alexov 《Proteins》2017,85(2):282-295
Protein–nucleic acid interactions play a crucial role in many biological processes. This work investigates the changes of pKa values and protonation states of ionizable groups (including nucleic acid bases) that may occur at protein–nucleic acid binding. Taking advantage of the recently developed pKa calculation tool DelphiPka, we utilize the large protein–nucleic acid interaction database (NPIDB database) to model pKa shifts caused by binding. It has been found that the protein's interfacial basic residues experience favorable electrostatic interactions while the protein acidic residues undergo proton uptake to reduce the energy cost upon the binding. This is in contrast with observations made for protein–protein complexes. In terms of DNA/RNA, both base groups and phosphate groups of nucleotides are found to participate in binding. Some DNA/RNA bases undergo pKa shifts at complex formation, with the binding process tending to suppress charged states of nucleic acid bases. In addition, a weak correlation is found between the pH‐optimum of protein–DNA/RNA binding free energy and the pH‐optimum of protein folding free energy. Overall, the pH‐dependence of protein–nucleic acid binding is not predicted to be as significant as that of protein–protein association. Proteins 2017; 85:282–295. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
8.
9.
10.
11.
12.
Phage T4 gene 32 protein and Escherichia coli RNA polymerase were bound to hamster papovavirus DNA. The binding regions were identified by electron microscopy employing a protein-free spreading technique. After gene 32 protein treatment four denaturation regions could be mapped, at 0.04–0.12, 0.30–0.36, 0.50–0.60 and 0.75–0.90 DNA map units, respectively, using the unique BamHI cleavage site as zero point. Eight RNA polymerase binding sites can be found which are localized at positions 0.05; 0.11; 0.18; 0.31; 0.57; 0.66; 0.76 and 0.82. A comparison of the RNA polymerase binding sites with the gene 32 protein denaturation pattern reveals a correspondence of six of eight polymerase binding sites with (A + T)-rich regions within the hamster papovavirus genome.  相似文献   

13.
A structural protein of Rauscher oncovirus of about 8,000 to 10,000 daltons (p10), encoded by the gag gene, has been purified in high yield to apparent homogeneity by a simple three-step procedure. The purified protein was highly basic, with an isoelectric point of more than 9.0, and its immunological antigenicity was chiefly group specific. A distinctive property of the protein was the binding to nucleic acids. The stoichiometry of p10 binding to Rauscher virus RNA was analyzed using both 125I-labeled p10 and 3H-labeled RNA. The protein-RNA complex, cross-linked by formaldehyde, was separated from free RNA and free protein by velocity sedimentation and density gradient centrifugation. A maximum of about 140 mol of p10 was bound per mol of 35S RNA, or about one molecule of p10 per 70 nucleotides. This protein-RNA complex banded at a density of about 1.55 g/ml. The number of nucleic acid sites bound and the affinity of p10 binding differed significantly among the other polynucleotides tested. The protein bound to both RNA and DNA with a preference for single-stranded molecules. Rauscher virus RNA and single-stranded phage fd DNA contained the highest number of binding sites. Binding to fd DNA was saturated with about 30 mol of p10 per mol of fd DNA, an average of about one p10 molecule per 180 nucleotides. The apparent binding constant was 7.3 X 10(7) M(-1). The properties of the p10 place it in a category with other nucleic acid binding proteins that achieve a greater binding density on single-stranded than on double-stranded molecules and appear to act by facilitating changes in polynucleotide conformation.  相似文献   

14.
Single-pulse (approximately 8 ns) ultraviolet laser excitation of protein-nucleic acid complexes can result in efficient and rapid covalent cross-linking of proteins to nucleic acids. The reaction produces no nucleic acid-nucleic acid or protein-protein cross-links, and no nucleic acid degradation. The efficiency of cross-linking is dependent on the wavelength of the exciting radiation, on the nucleotide composition of the nucleic acid, and on the total photon flux. The yield of cross-links/laser pulse is largest between 245 and 280 nm; cross-links are obtained with far UV photons (200-240 nm) as well, but in this range appreciable protein degradation is also observed. The method has been calibrated using the phage T4-coded gene 32 (single-stranded DNA-binding) protein interaction with oligonucleotides, for which binding constants have been measured previously by standard physical chemical methods (Kowalczykowski, S. C., Lonberg, N., Newport, J. W., and von Hippel, P. H. (1981) J. Mol. Biol. 145, 75-104). Photoactivation occurs primarily through the nucleotide residues of DNA and RNA at excitation wavelengths greater than 245 nm, with reaction through thymidine being greatly favored. The nucleotide residues may be ranked in order of decreasing photoreactivity as: dT much greater than dC greater than rU greater than rC, dA, dG. Cross-linking appears to be a single-photon process and occurs through single nucleotide (dT) residues; pyrimidine dimer formation is not involved. Preliminary studies of the individual proteins of the five-protein T4 DNA replication complex show that gene 43 protein (polymerase), gene 32 protein, and gene 44 and 45 (polymerase accessory) proteins all make contact with DNA, and can be cross-linked to it, whereas gene 62 (polymerase accessory) protein cannot. A survey of other nucleic acid-binding proteins has shown that E. coli RNA polymerase, DNA polymerase I, and rho protein can all be cross-linked to various nucleic acids by the laser technique. The potential uses of this procedure in probing protein-nucleic acid interactions are discussed.  相似文献   

15.
16.
17.
Laser crosslinking of E. coli RNA polymerase and T7 DNA.   总被引:9,自引:6,他引:3       下载免费PDF全文
The first photochemical crosslinking of a protein to a nucleic acid using laser excitation is reported. A single, 120 mJ, 20 ns pulse at 248 nm crosslinks about 10% of bound E. coli RNA polymerase to T7 DNA under the conditions studied. The crosslinking yield depends on mercaptoethanol concentration, and is a linear function of laser intensity. The protein subunits crosslinked to DNA are beta, beta' and sigma.  相似文献   

18.
Complex of fd gene 5 protein and double-stranded RNA   总被引:2,自引:0,他引:2  
We report the formation of complexes of the single-stranded DNA binding protein encoded by gene 5 of fd virus, with natural double-stranded RNAs. In the first direct visualization of a complex of the fd gene 5 protein with a double-stranded nucleic acid, we show by electron microscopy that the double-stranded RNA complex has a structure which is distinct from that of complexes with single-stranded DNA and is consistent with uniform coating of the exterior of the double-stranded RNA helix by the protein. Circular dichroism spectral data demonstrate that the RNA double helix in the complex is undisrupted, and that perturbation of the 228-nm circular dichroism assigned to protein tyrosines can occur in the absence of intercalation of nucleotide bases with protein aromatic residues. Our findings emphasize the potential importance of interaction with the sugar-phosphate polynucleotide backbone in binding of the fd gene 5 protein to nucleic acids.  相似文献   

19.
A new method for the analysis and purification of the RNA-directed DNA polymerase of RNA tumor viruses has been developed. This nucleic acid affinity chromatography system utilizes an immobilized oligo (dT) moiety annealed with poly (A). The alpha and alphabeta DNA polymerases of avain myeloblastosis virus bound effectively to poly (A) oligo (dT)-cellulose. Alpha DNA polymerase did not bind effectively to poly (A) oligo (dT)-cellulose, poly (A)-cellulose, or to cellulose. Alphabeta bound to oligo (dT)-cellulose and cellulose at the same extent (approximately 30%), indicating that this enzyme did not bind specifically to the oligo (DT) moiety only. However, alphabeta bound to poly (A)-cellulose two to three times better than to cellulose itself, showing that alphabeta could bind to poly (A) without a primer. Alphabeta DNA polymerase also bound to poly (C)-cellulose, whereas alpha did not. These data show that the alpha DNA polymerase is defective in binding to nucleic acids if the beta subunit is not present. Data is presented which demonstrates that the alphabeta DNA polymerase bound tighter to poly (A). oligo (DT)-cellulose and to calf thymus DNA-cellulose than the alpha DNA polymerase, suggesting that the beta subunit or, at least part of it is responsible for this tighter binding. In addition, alphabeta DNA polymerase is able to reversibly transcribe avian myeloblastosis virus 70S RNA approximately fivefold faster than alpha DNA polymerase in the presence of Mg2+ and equally efficient in the presence of Mn2+. alpha DNA polymerase transcribed 9S globin m RNA slightly better than alphabeta with either metal ion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号