首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Formation of complex I between phage f2 RNA and coat protein, leading to repression of phage RNA polymerase synthesis, depends nonlinearly upon the concentration of the coat protein. Maximum formation of complex I was observed when six molecules of coat protein were bound to one molecule of RNA. RNase digestion of a glutaraldehyde-fixed complex left, as the products, coat protein oligomers. The heaviest, hexamers, predominated in the mixture. It was also shown that, in an ionic environment required for phage protein synthesis, coat protein at a concentration optimum for complex I formation exists in solution as a dimer. The results indicate that the translational repression of the RNA polymerase cistron is due to a cooperative attachment to phage template of three dimers of coat protein, forming a hexameric cluster on an RNA strand.  相似文献   

6.
7.
8.
HeLa cells infected with human rhinovirus type 2 synthesize a mixture of single-and double-stranded ribonucleic acid (RNA). The RNA synthesized by the membrane-bound RNA polymerase complex in vitro is also a mixture of single- and double-stranded RNA, whereas the deoxycholate-treated RNA polymerase complex synthesized only double-stranded RNA. Although twice as much cell-associated viral RNA is synthesized in vivo at 34 C than at 37 C, there is no difference in the rate of RNA synthesized in vitro at 34 C and 37 C by the polymerase complex. The RNA polymerase complex, after treatment with deoxycholate, sediments as a broad peak with an average sedimentation value of 120S.  相似文献   

9.
The RNA-dependent RNA polymerase of influenza virus A/PR/8 was isolated from virus particles by stepwise centrifugation in cesium salts. First, RNP (viral RNA-NP-P proteins) complexes were isolated by glycerol gradient centrifugation of detergent-treated viruses and subsequently NP was dissociated from RNP by cesium chloride gradient centrifugation. The P-RNA (P proteins-viral RNA) complexes were further dissociated into P proteins and viral RNA by cesium trifluoroacetate (CsTFA) gradient centrifugation. The nature of P proteins was further analyzed by glycerol gradient centrifugation and immunoblotting using monospecific antibodies against each P protein. The three P proteins, PB1, PB2, and PA, sedimented altogether as fast as the marker protein with the molecular weight of about 250,000 Da. Upon addition of the template vRNA, the RNA-free P protein complex exhibited the activities of capped RNA cleavage and limited RNA synthesis. When a cell line stably expressing cDNAs for three P proteins and NP protein was examined, the three P proteins were found to be co-precipitated by antibodies against the individual P proteins. These results indicate that the influenza virus RNA-dependent RNA polymerase is a heterocomplex composed of one each of the three P proteins and that the RNA-free RNA polymerase can be isolated in an active form from virus particles. Furthermore, the three P proteins form a complex in the absence of vRNA.  相似文献   

10.
11.
12.
The RNA-dependent RNA polymerase of bacteriophage phi6 transcribes mRNA from the three segments of the dsRNA viral genome. We have cocrystallized RNA oligonucleotides with the polymerase, revealing the mode of binding of RNA templates. This binding is somewhat different from that previously seen for DNA oligomers, leading to additional RNA-protein hydrogen bonds, consistent with a preference for RNA. Activation of the RNA/polymerase complex by the addition of substrate and Mg2+ initiates a single round of reaction within the crystal to form a dead-end complex that partially collapses within the enzyme active site. By replacing Mg2+ with Ca2+, we have been able to capture the inhibited complex which shows distortion that explains the structural basis for the inhibition of such polymerases by Ca2+.  相似文献   

13.
In this paper we demonstrate that neutron small angle scattering is a suitable method to study the spatial arrangement of large specific protein-DNA complexes. We studied the complex of DNA-dependent RNA polymerase of Escherichia coli and a 130 base-pair DNA fragment containing the strong promoter A1 of bacteriophage T7. Contrast variation of the complex with deuterium allowed us to "visualize" either RNA polymerase, or DNA, or both components in situ. From the corresponding scattering curves information was derived about: (1) Conformational changes of RNA polymerase and DNA by complex formation: comparison of the scattering profiles of the isolated and complexed components showed that by specific complex formation the cross-section of RNA polymerase decreases, while the DNA fragment does not undergo a gross conformational change. (2) The spatial arrangement of RNA polymerase and DNA in the specific complex from the cross-sectional radii of gyration of the complex the normal distance dn between the centre of gravity of the RNA polymerase and the axis of the DNA fragment was derived as 5.0 (+/- 0.3) nm. On the basis of these and footprinting data a low resolution model of the RNA polymerase-promoter complex is proposed. The main feature of this model is the positioning of RNA polymerase to only one side of the DNA.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Formation of the strand-separated, open complex between RNA polymerase and a promoter involves several intermediates, the first being the closed complex in which the DNA is fully base-paired. This normally short lived complex has been difficult to study. We have used a mutant Escherichia coli RNA polymerase, deficient in promoter DNA melting, and variants of the P(R) promoter of bacteriophage lambda to model the closed complex intermediate at physiologically relevant temperatures. Our results indicate that in the closed complex, RNA polymerase recognizes base pairs as double-stranded DNA even in the region that becomes single-stranded in the open complex. Additionally, a particular base pair in the -35 region engages in an important interaction with the RNA polymerase, and a DNase I-hypersensitive site, pronounced in the promoter DNA of the open complex, was not present. The effect of temperature on closed complex formation was found to be small over the temperature range from 15 to 37 degrees C. This suggests that low temperature complexes of wild type RNA polymerase and promoter DNA may adequately model the closed complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号