首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhou J  Chen CH  Aiken C 《Journal of virology》2006,80(24):12095-12101
The compound 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (DSB) potently and specifically inhibits human immunodeficiency virus type 1 (HIV-1) replication by delaying the cleavage of the CA-SP1 junction in Gag, leading to impaired maturation of the viral core. In this study, we investigated HIV-1 resistance to DSB by analyzing HIV-1 mutants encoding a variety of individual amino acid substitutions in the CA-SP1 cleavage site. Three of the substitutions were lethal to HIV-1 replication owing to a deleterious effect on particle assembly. The remaining mutants exhibited a range of replication efficiencies; however, each mutant was capable of replicating in the presence of concentrations of DSB that effectively inhibited wild-type HIV-1. Mutations conferring resistance to DSB also led to impaired binding of the compound to immature HIV-1 virions and loss of DSB-mediated inhibition of cleavage of Gag. Surprisingly, two of the DSB-resistant mutants retained an intermediate ability to bind the compound, suggesting that binding of DSB to immature HIV-1 particles may not be sufficient for antiviral activity. Overall, our results indicate that Gag amino acids L363 and A364 are critical for inhibition of HIV-1 replication by DSB and suggest that these residues form key contacts with the drug in the context of the assembling HIV-1 particle. These results have implications for the design of and screening for novel inhibitors of HIV-1 maturation.  相似文献   

2.
During retrovirus particle maturation, the assembled Gag polyprotein is cleaved by the viral protease into matrix (MA), capsid (CA), and nucleocapsid (NC) proteins. To form the mature viral capsid, CA rearranges, resulting in a lattice composed of hexameric and pentameric CA units. Recent structural studies of assembled HIV-1 CA revealed several inter-subunit interfaces in the capsid lattice, including a three-fold interhexamer interface that is critical for proper capsid stability. Although a general architecture of immature particles has been provided by cryo-electron tomographic studies, the structural details of the immature particle and the maturation pathway remain unknown. Here, we used cryo-electron microscopy (cryoEM) to determine the structure of tubular assemblies of the HIV-1 CA-SP1-NC protein. Relative to the mature assembled CA structure, we observed a marked conformational difference in the position of the CA-CTD relative to the NTD in the CA-SP1-NC assembly, involving the flexible hinge connecting the two domains. This difference was verified via engineered disulfide crosslinking, revealing that inter-hexamer contacts, in particular those at the pseudo three-fold axis, are altered in the CA-SP1-NC assemblies compared to the CA assemblies. Results from crosslinking analyses of mature and immature HIV-1 particles containing the same Cys substitutions in the Gag protein are consistent with these findings. We further show that cleavage of preassembled CA-SP1-NC by HIV-1 protease in vitro leads to release of SP1 and NC without disassembly of the lattice. Collectively, our results indicate that the proteolytic cleavage of Gag leads to a structural reorganization of the polypeptide and creates the three-fold interhexamer interface, important for the formation of infectious HIV-1 particles.  相似文献   

3.
HIV-1 buds form infected cells in an immature, non-infectious form. Maturation into an infectious virion requires proteolytic cleavage of the Gag polyprotein at five positions, leading to a dramatic change in virus morphology. Immature virions contain an incomplete spherical shell where Gag is arranged with the N-terminal MA domain adjacent to the membrane, the CA domain adopting a hexameric lattice below the membrane, and beneath this, the NC domain and viral RNA forming a disordered layer. After maturation, NC and RNA are condensed within the particle surrounded by a conical CA core. Little is known about the sequence of structural changes that take place during maturation, however. Here we have used cryo-electron tomography and subtomogram averaging to resolve the structure of the Gag lattice in a panel of viruses containing point mutations abolishing cleavage at individual or multiple Gag cleavage sites. These studies describe the structural intermediates correlating with the ordered processing events that occur during the HIV-1 maturation process. After the first cleavage between SP1 and NC, the condensed NC-RNA may retain a link to the remaining Gag lattice. Initiation of disassembly of the immature Gag lattice requires cleavage to occur on both sides of CA-SP1, while assembly of the mature core also requires cleavage of SP1 from CA.  相似文献   

4.

Background

Bevirimat, the prototype Human Immunodeficiency Virus type 1 (HIV-1) maturation inhibitor, is highly potent in cell culture and efficacious in HIV-1 infected patients. In contrast to inhibitors that target the active site of the viral protease, bevirimat specifically inhibits a single cleavage event, the final processing step for the Gag precursor where p25 (CA-SP1) is cleaved to p24 (CA) and SP1.

Results

In this study, photoaffinity analogs of bevirimat and mass spectrometry were employed to map the binding site of bevirimat to Gag within immature virus-like particles. Bevirimat analogs were found to crosslink to sequences overlapping, or proximal to, the CA-SP1 cleavage site, consistent with previous biochemical data on the effect of bevirimat on Gag processing and with genetic data from resistance mutations, in a region predicted by NMR and mutational studies to have α-helical character. Unexpectedly, a second region of interaction was found within the Major Homology Region (MHR). Extensive prior genetic evidence suggests that the MHR is critical for virus assembly.

Conclusions

This is the first demonstration of a direct interaction between the maturation inhibitor, bevirimat, and its target, Gag. Information gained from this study sheds light on the mechanisms by which the virus develops resistance to this class of drug and may aid in the design of next-generation maturation inhibitors.  相似文献   

5.
Maturation of nascent virions, a key step in retroviral replication, involves cleavage of the Gag polyprotein by the viral protease into its matrix (MA), capsid (CA), and nucleocapsid (NC) components and their subsequent reorganization. Bevirimat (BVM) defines a new class of antiviral drugs termed maturation inhibitors. BVM acts by blocking the final cleavage event in Gag processing, the separation of CA from its C-terminal spacer peptide 1 (SP1). Prior evidence suggests that BVM binds to Gag assembled in immature virions, preventing the protease from accessing the CA-SP1 cleavage site. To investigate this hypothesis, we used cryo-electron tomography to examine the structures of (noninfectious) HIV-1 viral particles isolated from BVM-treated cells. We find that these particles contain an incomplete shell of density underlying the viral envelope, with a hexagonal honeycomb structure similar to the Gag lattice of immature HIV but lacking the innermost, NC-related, layer. We conclude that the shell represents a remnant of the immature Gag lattice that has been processed, except at the CA-SP1 sites, but has remained largely intact. We also compared BVM-treated particles with virions formed by the mutant CA5, in which cleavage between CA and SP1 is also blocked. Here, we find a thinner CA-related shell with no visible evidence of honeycomb organization, indicative of an altered conformation and further suggesting that binding of BVM stabilizes the immature lattice. In both cases, the observed failure to assemble mature capsids correlates with the loss of infectivity.  相似文献   

6.
Despite the effectiveness of currently available human immunodeficiency virus type 1 (HIV-1) therapies, a continuing need exists for new drugs to treat HIV-1 infection. We investigated the mechanism by which 3-O-[3',3'-dimethylsuccinyl]-betulinic acid (DSB) inhibits HIV-1 replication. DSB functions at a late stage of the virus life cycle but does not inhibit the HIV-1 protease in vitro or interfere with virus assembly or release. DSB specifically delays the cleavage of Gag between the capsid (CA) and p2, resulting in delayed formation of the mature viral core and reduced HIV-1 infectivity. Replication of simian immunodeficiency virus (SIV) was resistant to DSB; however, a chimeric SIV carrying CA-p2 sequences from HIV-1 was inhibited by the drug, indicating that susceptibility to DSB maps to the CA-p2 region of the HIV-1 Gag protein. A single point mutation at the CA-p2 cleavage site of HIV-1 conferred strong resistance to DSB, confirming the target of the drug. HIV-1 strains that are resistant to a variety of protease inhibitors were sensitive to DSB. These findings indicate that DSB specifically protects the CA-p2 cleavage site from processing by the viral protease during virion maturation, thereby revealing a novel mechanism for pharmacologic inhibition of HIV-1 replication.  相似文献   

7.
Processing of the Gag precursor protein by the viral protease during particle release triggers virion maturation, an essential step in the virus replication cycle. The first-in-class HIV-1 maturation inhibitor dimethylsuccinyl betulinic acid [PA-457 or bevirimat (BVM)] blocks HIV-1 maturation by inhibiting the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. A structurally distinct molecule, PF-46396, was recently reported to have a similar mode of action to that of BVM. Because of the structural dissimilarity between BVM and PF-46396, we hypothesized that the two compounds might interact differentially with the putative maturation inhibitor-binding pocket in Gag. To test this hypothesis, PF-46396 resistance was selected for in vitro. Resistance mutations were identified in three regions of Gag: around the CA-SP1 cleavage site where BVM resistance maps, at CA amino acid 201, and in the CA major homology region (MHR). The MHR mutants are profoundly PF-46396-dependent in Gag assembly and release and virus replication. The severe defect exhibited by the inhibitor-dependent MHR mutants in the absence of the compound is also corrected by a second-site compensatory change far downstream in SP1, suggesting structural and functional cross-talk between the HIV-1 CA MHR and SP1. When PF-46396 and BVM were both present in infected cells they exhibited mutually antagonistic behavior. Together, these results identify Gag residues that line the maturation inhibitor-binding pocket and suggest that BVM and PF-46396 interact differentially with this putative pocket. These findings provide novel insights into the structure-function relationship between the CA MHR and SP1, two domains of Gag that are critical to both assembly and maturation. The highly conserved nature of the MHR across all orthoretroviridae suggests that these findings will be broadly relevant to retroviral assembly. Finally, the results presented here provide a framework for increased structural understanding of HIV-1 maturation inhibitor activity.  相似文献   

8.
Following budding, HIV-1 virions undergo a maturation process where the Gag polyprotein in the immature virus is cleaved by the viral protease and rearranges to form the mature infectious virion. Despite the wealth of structures of isolated capsid domains and an in?vitro-assembled mature lattice, models of the immature lattice do not provide an unambiguous model of capsid-molecule orientation and no structural information is available for the capsid maturation pathway. Here we have applied hydrogen/deuterium exchange mass spectrometry to immature, mature, and mutant Gag particles (CA5) blocked at the final Gag cleavage event to examine the molecular basis of capsid assembly and maturation. Capsid packing arrangements were very similar for all virions, whereas immature and CA5 virions contained an additional intermolecular interaction at the hexameric, 3-fold axis. Additionally, the N-terminal β-hairpin was observed to form as a result of capsid-SP1 cleavage rather than driving maturation as previously postulated.  相似文献   

9.
To become infectious, HIV-1 particles undergo a maturation process involving proteolytic cleavage of the Gag and Gag-Pol polyproteins. Immature particles contain a highly stable spherical Gag lattice and are impaired for fusion with target cells. The fusion impairment is relieved by truncation of the gp41 cytoplasmic tail (CT), indicating that an interaction between the immature viral core and gp41 within the particle represses HIV-1 fusion by an unknown mechanism. We hypothesized that the conformation of Env on the viral surface is regulated allosterically by interactions with the HIV-1 core during particle maturation. To test this, we quantified the binding of a panel of monoclonal antibodies to mature and immature HIV-1 particles by immunofluorescence imaging. Surprisingly, immature particles exhibited markedly enhanced binding of several gp41-specific antibodies, including two that recognize the membrane proximal external region (MPER) and neutralize diverse HIV-1 strains. Several of the differences in epitope exposure on mature and immature particles were abolished by truncation of the gp41 CT, thus linking the immature HIV-1 fusion defect with altered Env conformation. Our results suggest that perturbation of fusion-dependent Env conformational changes contributes to the impaired fusion of immature particles. Masking of neutralization-sensitive epitopes during particle maturation may contribute to HIV-1 immune evasion and has practical implications for vaccine strategies targeting the gp41 MPER.  相似文献   

10.
Wyma DJ  Kotov A  Aiken C 《Journal of virology》2000,74(20):9381-9387
Assembly of infectious human immunodeficiency virus type 1 (HIV-1) virions requires incorporation of the viral envelope glycoproteins gp41 and gp120. Several lines of evidence have suggested that the cytoplasmic tail of the transmembrane glycoprotein, gp41, associates with Pr55(Gag) in infected cells to facilitate the incorporation of HIV-1 envelope proteins into budding virions. However, direct evidence for an interaction between gp41 and Pr55(Gag) in HIV-1 particles has not been reported. To determine whether gp41 is associated with Pr55(Gag) in HIV-1 particles, viral cores were isolated from immature HIV-1 virions by sedimentation through detergent. The cores contained a major fraction of the gp41 that was present on untreated virions. Association of gp41 with cores required the presence of the gp41 cytoplasmic tail. In HIV-1 particles containing a functional protease, a mutation that prevents cleavage of Pr55(Gag) at the matrix-capsid junction was sufficient for the detergent-resistant association of gp41 with the isolated cores. In addition to gp41, a major fraction of virion-associated gp120 was also detected on immature HIV-1 cores. Isolation of cores under conditions known to disrupt lipid rafts resulted in the removal of a raft-associated protein incorporated into virions but not the HIV-1 envelope proteins. These results provide biochemical evidence for a stable interaction between Pr55(Gag) and the cytoplasmic tail of gp41 in immature HIV-1 particles. Moreover, findings in this study suggest that the interaction of Pr55(Gag) with gp41 may regulate the function of the envelope proteins during HIV-1 maturation.  相似文献   

11.
A conformational switch controlling HIV-1 morphogenesis   总被引:1,自引:0,他引:1  
Assembly of infectious human immunodeficiency virus type 1 (HIV-1) proceeds in two steps. Initially, an immature virus with a spherical capsid shell consisting of uncleaved Gag polyproteins is formed. Extracellular proteolytic maturation causes rearrangement of the inner virion structure, leading to the conical capsid of the infectious virus. Using an in vitro assembly system, we show that the same HIV-1 Gag-derived protein can form spherical particles, virtually indistinguishable from immature HIV-1 capsids, as well as tubular or conical particles, resembling the mature core. The assembly phenotype could be correlated with differential binding of the protein to monoclonal antibodies recognizing epitopes in the HIV-1 capsid protein (CA), suggesting distinct conformations of this domain. Only tubular and conical particles were observed when the protein lacked spacer peptide SP1 at the C-terminus of CA, indicating that SP1 may act as a molecular switch, whose presence determines spherical capsid formation, while its cleavage leads to maturation.  相似文献   

12.
The assembly of an HIV-1 particle begins with the construction of a spherical lattice composed of hexamer subunits of the Gag polyprotein. The cellular metabolite inositol hexakisphosphate (IP6) binds and stabilizes the immature Gag lattice via an interaction with the six-helix bundle (6HB), a crucial structural feature of Gag hexamers that modulates both virus assembly and infectivity. The 6HB must be stable enough to promote immature Gag lattice formation, but also flexible enough to be accessible to the viral protease, which cleaves the 6HB during particle maturation. 6HB cleavage liberates the capsid (CA) domain of Gag from the adjacent spacer peptide 1 (SP1) and IP6 from its binding site. This pool of IP6 molecules then promotes the assembly of CA into the mature conical capsid that is required for infection. Depletion of IP6 in virus-producer cells results in severe defects in assembly and infectivity of wild-type (WT) virions. Here we show that in an SP1 double mutant (M4L/T8I) with a hyperstable 6HB, IP6 can block virion infectivity by preventing CA-SP1 processing. Thus, depletion of IP6 in virus-producer cells markedly increases M4L/T8I CA-SP1 processing and infectivity. We also show that the introduction of the M4L/T8I mutations partially rescues the assembly and infectivity defects induced by IP6 depletion on WT virions, likely by increasing the affinity of the immature lattice for limiting IP6. These findings reinforce the importance of the 6HB in virus assembly, maturation, and infection and highlight the ability of IP6 to modulate 6HB stability.  相似文献   

13.
Retrovirus particles are not infectious until they undergo proteolytic maturation to form a functional core. Here we report a link between human immunodeficiency virus type 1 (HIV-1) core maturation and the ability of the virus to fuse with target cells. Using a recently developed reporter assay of HIV-1 virus-cell fusion, we show that immature HIV-1 particles are 5- to 10-fold less active for fusion with target cells than are mature virions. The fusion of mature and immature virions was rendered equivalent by truncating the gp41 cytoplasmic domain or by pseudotyping viruses with the glycoprotein of vesicular stomatitis virus. An analysis of a panel of mutants containing mutated cleavage sites indicated that HIV-1 fusion competence is activated by the cleavage of Gag at any site between the MA and NC segments and not as an indirect consequence of an altered core structure. These results suggest a mechanism by which binding of the gp41 cytoplasmic tail to Gag within immature HIV-1 particles inhibits Env conformational changes on the surface of the virion that are required for membrane fusion. This "inside-out" regulation of HIV-1 fusion could play an important role in the virus life cycle by preventing the entry of immature, noninfectious particles.  相似文献   

14.
Jiang J  Aiken C 《Journal of virology》2007,81(18):9999-10008
Lentiviruses, including human immunodeficiency virus type 1 (HIV-1), typically encode fusion glycoproteins with long cytoplasmic tails (CTs). We previously reported that immature HIV-1 particles are inhibited for fusion with target cells by a mechanism requiring the 152-amino-acid CT of gp41. The gp41 CT was also shown to mediate the detergent-resistant association of the HIV-1 envelope glycoprotein complex with immature HIV-1 particles, indicating that the gp41 CT forms a stable complex with Gag in immature virions. In the present study, we analyzed the effects of progressive truncations and point mutations in the gp41 CT on the fusion of mature and immature HIV-1 particles with target cells. We also determined the effects of these mutations on the detergent-resistant association of gp41 with immature HIV-1 particles. Removal of the C-terminal 28 amino acids relieved the dependence of HIV-1 fusion on maturation. However, a mutant Env protein lacking this region remained associated with immature HIV-1 particles treated with nonionic detergent. Further mutational analysis of the C-terminal region of gp41 revealed two specific sequences required for maturation-dependent HIV-1 fusion. Collectively, our results demonstrate that the extreme C terminus of gp41 plays a key role in coupling HIV-1 fusion competence to virion maturation. They further indicate that the stable association of gp41 with Gag in immature virions is not sufficient for inhibition of immature HIV-1 particle fusion.  相似文献   

15.
After their release from host cells, most retroviral particles undergo a maturation process, which includes viral protein cleavage, core condensation, and increased stability of the viral RNA dimer. Inactivating the viral protease prevents protein cleavage; the resulting virions lack condensed cores and contain fragile RNA dimers. Therefore, protein cleavage is linked to virion morphological change and increased stability of the RNA dimer. However, it is unclear whether protein cleavage is sufficient for mediating virus RNA maturation. We have observed a novel phenotype in a murine leukemia virus capsid mutant, which has normal virion production, viral protein cleavage, and RNA packaging. However, this mutant also has immature virion morphology and contains a fragile RNA dimer, which is reminiscent of protease-deficient mutants. To our knowledge, this mutant provides the first evidence that Gag cleavage alone is not sufficient to promote RNA dimer maturation. To extend our study further, we examined a well-defined human immunodeficiency virus type 1 (HIV-1) Gag mutant that lacks a functional PTAP motif and produces immature virions without major defects in viral protein cleavage. We found that the viral RNA dimer in the PTAP mutant is more fragile and unstable compared with those from wild-type HIV-1. Based on the results of experiments using two different Gag mutants from two distinct retroviruses, we conclude that Gag cleavage is not sufficient for promoting RNA dimer maturation, and we propose that there is a link between the maturation of virion morphology and the viral RNA dimer.  相似文献   

16.
The processing of precursor proteins (Gag and Gag-pol) by the viral protease is absolutely required in order to generate infectious particles. This prompted us to consider novel strategies that target viral maturation. Towards this end, we have engineered an HIV-1 virion associated protein, Vpr, to contain protease cleavage signal sequences from Gag and Gag-pol precursor proteins. We previously reported that virus particles derived from HIV-1 proviral DNA, encoding chimeric Vpr, showed a lack of infectivity, depending on the fusion partner. As an extension of that work, the potential of chimeric Vpr as a substrate for HIV-1 protease was tested utilizing an epitope-based assay. Chimeric Vpr molecules were modified such that the Flag epitope is removed following cleavage, thus allowing us to determine the efficiency of protease cleavage. Following incubation with the protease, the resultant products were analyzed by radioimmunoprecipitation using antibodies directed against the Flag epitope. Densitometric analysis of the autoradiograms showed processing to be both rapid and specific. Further, the analysis of virus particles containing chimeric Vpr by immunoblot showed reactivities to antibodies against the Flag epitope similar to the data observed in vitro. These results suggest that the pseudosubstrate approach may provide another avenue for developing antiviral agents.  相似文献   

17.
Retrovirus maturation involves sequential cleavages of the Gag polyprotein, initially arrayed in a spherical shell, leading to formation of capsids with polyhedral or conical morphology. Evidence suggests that capsids assemble de novo inside maturing virions from dissociated capsid (CA) protein, but the possibility persists of a displacive pathway in which the CA shell remains assembled but is remodeled. Inhibition of the final cleavage between CA and spacer peptide SP1/SP blocks the production of mature capsids. We investigated whether retention of SP might render CA assembly incompetent by testing the ability of Rous sarcoma virus (RSV) CA-SP to assemble in vitro into icosahedral capsids. Capsids were indeed assembled and were indistinguishable from those formed by CA alone, indicating that SP was disordered. We also used cryo-electron tomography to characterize HIV-1 particles produced in the presence of maturation inhibitor PF-46396 or with the cleavage-blocking CA5 mutation. Inhibitor-treated virions have a shell that resembles the CA layer of the immature Gag shell but is less complete. Some CA protein is generated but usually not enough for a mature core to assemble. We propose that inhibitors like PF-46396 bind to the Gag lattice where they deny the protease access to the CA-SP1 cleavage site and prevent the release of CA. CA5 particles, which exhibit no cleavage at the CA-SP1 site, have spheroidal shells with relatively thin walls. It appears that this lattice progresses displacively toward a mature-like state but produces neither conical cores nor infectious virions. These observations support the disassembly-reassembly pathway for core formation.  相似文献   

18.
The capsid protein (CA) of the mature human immunodeficiency virus (HIV) contains an N-terminal beta-hairpin that is essential for formation of the capsid core particle. CA is generated by proteolytic cleavage of the Gag precursor polyprotein during viral maturation. We have determined the NMR structure of a 283-residue N-terminal fragment of immature HIV-1 Gag (Gag(283)), which includes the intact matrix (MA) and N-terminal capsid (CA(N)) domains. The beta-hairpin is unfolded in Gag(283), consistent with the proposal that hairpin formation occurs subsequent to proteolytic cleavage of Gag, triggering capsid assembly. Comparison of the immature and mature CA(N) structures reveals that beta-hairpin formation induces a approximately 2 A displacement of helix 6 and a concomitant displacement of the cyclophylin-A (CypA)-binding loop, suggesting a possible allosteric mechanism for CypA-mediated destabilization of the capsid particle during infectivity.  相似文献   

19.
The major structural elements of retroviruses are contained in a single polyprotein, Gag, which in human immunodeficiency virus type 1 (HIV-1) comprises the MA, CA, spacer peptide 1 (SP1), NC, SP2, and p6 polypeptides. In the immature HIV-1 virion, the domains of Gag are arranged radially with the N-terminal MA domain at the membrane and C-terminal NC-SP2-p6 region nearest to the center. Here, we report the three-dimensional structures of individual immature HIV-1 virions, as obtained by electron cryotomography. The concentric shells of the Gag polyprotein are clearly visible, and radial projections of the different Gag layers reveal patches of hexagonal order within the CA and SP1 shells. Averaging well-ordered unit cells leads to a model in which each CA hexamer is stabilized by a bundle of six SP1 helices. This model suggests why the SP1 spacer is essential for assembly of the Gag lattice and how cleavage between SP1 and CA acts as a structural switch controlling maturation.  相似文献   

20.
Differences in virion RNA dimer stability between mature and protease-defective (immature) forms of human immunodeficiency virus type 1 (HIV-1) suggest that maturation of the viral RNA dimer is regulated by the proteolytic processing of the HIV-1 Gag and Gag-Pol precursor proteins. However, the proteolytic processing of these proteins occurs in several steps denoted primary, secondary, and tertiary cleavage events and, to date, the processing step associated with formation of stable HIV-1 RNA dimers has not been identified. We show here that a mutation in the primary cleavage site (p2/nucleocapsid [NC]) hinders formation of stable virion RNA dimers, while dimer stability is unaffected by mutations in the secondary (matrix/capsid [CA], p1/p6) or a tertiary cleavage site (CA/p2). By introducing mutations in a shared cleavage site of either Gag or Gag-Pol, we also show that the cleavage of the p2/NC site in Gag is more important for dimer formation and stability than p2/NC cleavage in Gag-Pol. Electron microscopy analysis of viral particles shows that mutations in the primary cleavage site in Gag but not in Gag-Pol inhibit viral particle maturation. We conclude that virion RNA dimer maturation is dependent on proteolytic processing of the primary cleavage site and is associated with virion core formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号