首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All of the creatine kinase isozymes from human, calf, and rabbit brain and muscle are composed of two noncovalently linked polypeptide chains, based upon sedimentation equilibrium analyses in the presence and absence of disruptive agents. The brain-type isozymes of man, calf, and rabbit proved to be slightly heavier than the muscle types. Various physicochemical properties of the isozymes are recorded. Each group of isozymes, i.e., the muscle, hybrid (muscle-brain), and brain isozymes from man, calf, and rabbit, showed similar electrophoretic behavior, although isoelectric points were not precisely identical for the muscle and hybrid types. Theoretical titration curves constructed from amino acid compositions of the calf isozymes showed reasonable agreement between their calculated and measuredpI 0 values (isoelectric point extrapolated to zero ionic strength). The three native muscle isozymes and brain isozymes all contain two reactive sulfhydryl groups per mole or one per polypeptide chain of their two-chain proteins, which may be titrated with 5,5′-dithiobis (2-nitrobenzoic acid); and under acidic conditions, quantitative titrations with 4,4′-dithiodipyridine yield a total of ten- SH groups per mole of each brain-type and eight- SH groups per mole of muscle-type isozyme in the case of man, calf, and rabbit. A comparison of their amino acid compositions and tryptic peptide maps shows that there is only a slightly greater degree of homology between the individual isozymes of the same type (muscle type or brain type) than between the muscle- and brain-type isozymes of the same species.  相似文献   

2.
Four polypeptide chains composing acetylcholine receptors from the electric organ of Torpedo californica were purified by preparative electrophoresis in sodium dodecyl sulfate. Their apparent mole ratio alpha/beta/gamma/delta is 2:1:1:1. These chains are not readily distinguished by amino acid or carbohydrate composition but are distinguished by apparent molecular weight and polypeptide maps. By peptide maps, no extensive homology is evident between these chains or between any of these chains and higher molecular weight chains found in receptor-enriched membrane fragments.  相似文献   

3.
The complete amino acid sequence of acetyl-CoA carboxylase from chicken liver has been deduced by cloning and sequence analysis of DNA complementary to its messenger RNA. The results were confirmed by Edman degradation of peptide fragments obtained by digestion of the enzyme polypeptide with Achromobacter proteinase I or staphylococcal serine proteinase. Chicken liver acetyl-CoA carboxylase is predicted to be composed of 2,324 amino acid residues, having a calculated molecular weight of 262,706. The biotin carboxyl carrier protein domain is located in the middle region of the enzyme polypeptide. The amino-terminal portion of the acetyl-CoA carboxylase has been found to exhibit a homologous primary structure to that of carbamyl phosphate synthetase. Localization of possible functional domains including biotin carboxylase subsite in the acetyl-CoA carboxylase polypeptide is discussed.  相似文献   

4.
Guanidoacetate methyltransferase (EC 2.1.1.2) has been purified about 800-fold from rat liver. The purified preparation shows a single protein band on polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The molecular weight of the enzyme is estimated to be 25,000 and 26,000 by Sephadex gel molecular-exclusion chromatography and by electrophoresis in polyacrylamide gradient gel, respectively. The sodium dodecyl sulfate-denatured enzyme also has a molecular weight of 26,000; thus, the enzyme is a monomeric protein. Guanidoacetate methyltransferase as isolated is catalytically inactive, but is readily reactivated by incubation with a thiol. The reactivated enzyme, which contains 3 mol of sulfhydryl groups/mol of enzyme, is again inactivated by oxidized glutathione. This inactivation is accompanied by the disappearance of two sulfhydryl residues. The relationship between the loss of enzyme activity and the number of residues disappeared indicates that the integrity of these sulfhydryl residues is critical for activity. The oxidized enzyme fails to bind the substrate S-adenosylmethionine as evidenced by the equilibrium dialysis study. Alkylation of the nonoxidizable sulfhydryl by N-ethylmaleimide shows that this residue is also essential for activity. UV absorption, fluorescence, and CD spectra show no difference between the reduced and oxidized enzymes, but the former is more susceptible to proteolytic attack by trypsin. The enzyme has an isoelectric pH of 5.3, and is most active at pH 9.0. From the CD spectrum, an α helix content of 15% is calculated. The Km values for guanidoacetate and S-adenosylmethionine are 97.5 and 6.73 μm, respectively, at pH 8.0 and 37 °C.  相似文献   

5.
Rat brain hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) contains 21 cysteine residues. On the basis of the amino acid sequence of the enzyme, these are predicted to be distributed among 14 peptides produced by tryptic digestion. Ten of these peptides, containing cysteine residues derivatized by reaction with the specific sulfhydryl reagent 2-bromoacetamido-4-nitrophenol have been identified in HPLC peptide maps; the four missing peptides are predicted to be relatively large and hydrophobic in character, properties that may have prevented their detection under the present conditions. The sequences encompassed by the 10 identified peptides include 12 of the 21 cysteine residues in the enzyme. The relative reactivity of these sulfhydryl groups with 2-bromoacetamido-4-nitrophenol has been assessed, and is in general accord with what might be predicted on the basis of their accessibility in the previously proposed structure for this enzyme. The effect of various ligands on reactivity of identified sulfhydryl groups has been determined; unique patterns of altered reactivity, resulting from ligand-induced conformational changes, have been observed. Biphasic effects were observed with increasing concentrations of either glucose 6-phosphate (Glc-6-P) or Pi. In both cases, decreased reactivity of sulfhydryls in the N-terminal half of the molecule was observed at low concentrations of the ligand, while further increase in ligand concentration resulted in decreased reactivity of sulfhydryl groups in the C-terminal half. In contrast, sulfhydryls in both N- and C-terminal halves were protected concomitantly by increasing concentrations of Glc. These results are consistent with previous studies that indicated (a) the existence of two sites for binding of Glc-6-P or Pi, a high affinity site in the N-terminal half and a site with lower affinity in the C-terminal half of the brain hexokinase molecule, and (b) binding of Glc to a single site located in the C-terminal half but evoking conformational effects throughout the molecule; the glucose analog, N-acetylglucosamine, previously shown to have more limited effects on conformation, affected reactivity of sulfhydryl groups only in the C-terminal half of the molecule. As reflected by effects on reactivity of sulfhydryl groups, conformational changes induced by binding of nucleotides depends markedly on the specific nature of the purine or pyrimidine base as well as the length and chelation status of the polyphosphate side chain. These results focus attention on specific regions of the molecule (the immediate environment of the sulfhydryl groups) that are affected by the binding of these ligands.  相似文献   

6.
1. A pancreatic polypeptide (PP)-immunoreactive neuropeptide has been isolated and partially sequenced from the liver fluke, Fasciola hepatica.2. Gel permeation chromatography of an acid ethanol extract of cattle flukes showed that the peptide is similar in size to mammalian (bovine) PP.3. The Fasciola peptide was purified to homogeneity by means of reverse-phase HPLC, employing different column chemistries.4. The purified peptide was sequenced using automated gas-phase Edman degradation and the first 24 amino acid residues determined.  相似文献   

7.
The four human Duchenne dystrophic isoenzymes (M-M, M-B, B-B, from the muscle and B-B from the brain) of ATP-creatine transphosphorylase (S. A. Kuby, H. J. Keutel, K. Okabe, H. K. Jacobs, F. Ziter, D. Gerber, and F. H. Tyler, 1977, J. Biol. Chem.252, 8382–8390) have now been compared physically and chemically with their normal human counterparts (viz., with the three isoenzymes, M-M, M-B, B-B, 2). All isoenzymes proved to be composed of two noncovalently linked polypeptide chains, by sedimentation equilibrium analyses in the presence and absence of disruptive agents. In the presence of 2-mercaptoethanol at 0.16(Γ/2), pH 7.8, the two native muscle types yielded identical values for s20,w, concentration dependencies, and molecular weight, and similarly for the brain types (from the brain). But the human brain type proved to be slightly heavier than the muscle type (viz. 88,400 vs 85,900). All of the isoenzymes showed similar electrophoretic behavior between their several counterparts between pH 5–8, except perhaps between pH 8–10, where small differences appeared. The three native normal human isoenzymes, as well as the dystrophic human isoenzymes (M-M from the muscle and B-B from the brain) all contain 2 reactive sulfhydryl groups per mole or 1 per polypeptide chain of these two-chain proteins, which may be titrated with 5,5′-dithiobis(2-nitrobenzoic acid) (Nbs2); and under acidic conditions, quantitative titrations with 4,4′-dithiodipyridine yield a total of 10 -SH groups per mole of each brain type and 8 -SH groups per mole of muscle type, in the case of man, dystrophic man, calf, and rabbit. The kinetics of reactions between Nbs2 and the sulfhydryl groups of all three normal human isoenzymes and two dystrophic human isoenzymes have been measured under several sets of denaturing conditions. A comparison of their reactive calculated second-order velocity constants reveal significant differences between these three normal human isoenzymes, but the ksecond order values for the reactions of the sulfhydryl groups of the dystrophic M-M and B-B with Nbs2, when compared with their normal counterparts, gave identical values in the presence of 7.3 m urea or 1.8% laurylsulfate, from which it may be inferred that very similar, if not identical, environments surround these two sets of sulfhydryl groups. A comparison of the amino acid compositions of the normal human muscle type and brain type with the human dystrophic M-M and B-B (from the brain) reveal essentially identical values for the muscle types but nearly identical values for the brain types, with a few differences. Their respective tryptic peptide maps have been compared of the S-carboxy-methylated proteins (alkylated with iodo[2-14C]acetic acid at the two exposed -SH groups per mole). Thus, the muscle types, normal and dystrophic, yield identical maps, but the brain types nearly identical maps, with a few significant differences. Isolation of the tryptic tridecapeptide from the S-carboxymethylated normal human and dystrophic human dimeric muscle-type ATP-creatine transphosphorylases, labeled at the single exposed SH group per polypeptide chain with iodo[2-14C]acetate, yielded the following sequence for both proteins: ValLeuThrCys(CH2COOH)ProSerAsnLeuGlyThr GlyLeuArg [where Cys(CH2COOH) is S-carboxymethyl cysteine]. This sequence showed remarkable homology with a few other equivalent peptides reported to be derived from the exposed SH group of other ATP-creatine transphosphorylases. In conclusion, there does not appear to be a mutation in the structural genes for the muscle-type creatine kinases detectable by the analyses presented here. However, the brain types warrant further investigation.  相似文献   

8.
Analysis of the native enzyme and of the subunits produced upon its denaturation shows that pyruvate carboxylase from a thermophilic Bacillus is a tetramer with a molecular weight (mean value) of 558,000 and that the four polypeptide subunits are probably identical. The three functions (carboxyl carrier, carboxylation, and carboxyl transfer) in the pyruvate carboxylation reaction must therefore reside in this quarter-molecular polypeptide. The enzyme molecule contains four atoms of zinc and four molecules of D-biotin, and in the electron microscope the disposition of its four subunits presents a rhombic appearance. Reaction of the denatured enzyme with 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) reveals 10 sulfhydryl groups/subunit. In the native enzyme less than one of these groups reacts with DTNB. By contrast, all of these groups (11/subunit) of the native chicken liver pyruvate carboxylase are accessible to DTNB. The thermophile enzyme is also more resistant to other sulfhydryl reagents and to denaturation under certain conditions than the avian enzyme.  相似文献   

9.
Fructose-1,6-bisphosphatases (EC 3.1.3.11) isolated from rabbit liver and kidney appear to have identical primary structures, as deduced from their tryptic peptide maps and the peptide patterns obtained after cleavage with cyanogen bromide and chromatography on Sephadex G75. The enzyme isolated from rabbit skeletal muscle, on the other hand, yields distinctly different fingerprints and cyanogen bromide cleavage products. The results indicate that animal cells possess two genes that code for fructose-bisphosphatase. Native rabbit liver fructose bisphosphatase contains a single tryptophan located near the NH2-terminus, and the NH2 terminal-BrCN peptide containing this residue has been identified in the Sephadex G75 filtrates.  相似文献   

10.
Origin of the gamma polypeptide of the Na+/K+-ATPase   总被引:1,自引:0,他引:1  
The Na+/K+-ATPase purified from lamb kidney contains a gamma polypeptide fraction which is a collection of fragments derived from the alpha and beta polypeptides of the enzyme. This fraction has the solubility characteristics of a proteolipid and was isolated either by high performance liquid chromatography (size exclusion chromatography) in 1% sodium dodecyl sulfate or by sequential organic extraction of purified lamb kidney Na+/K+-ATPase. Formation of gamma polypeptide(s) from detergent solubilized holoenzyme was accelerated by sulfhydryl containing reagents and was unaffected by addition of inhibitors of proteolytic enzymes. Treatment of the holoenzyme with the photoaffinity reagent N-(2-nitro-4-azidophenyl)[3H]ouabain ([3H]NAP-ouabain) labeled the alpha polypeptide and the gamma polypeptide fraction but not the beta polypeptide. Amino acid sequence analysis of one gamma polypeptide preparation revealed homology of one component of this fraction with the N-terminus of the beta subunit of the Na+/K+-ATPase. Amino acid analysis of two preparations of proteolipid showed similar amino acid compositions with a peptide derived from the alpha subunit. The insolubility and complexity of the gamma polypeptide(s)/proteolipid fraction appears to preclude a conclusive sequence analysis of all components of this fraction.  相似文献   

11.
The amino acid sequence of staphylococcal protease has been determined by analysis of tryptic peptides obtained from cyanogen bromide fragments. Selected peptides obtained from digests with staphylococcal protease, thermolysin, and chymotrypsin provided the information necessary to align the tryptic peptides and the cyanogen bromide fragments. The protease is a single polypeptide chain of some 250 amino acids and is devoid of sulfhydryl groups. The COOH-terminal tryptic peptide of of the protease molecule contains some 43 residues, most of which are aspartic acids, asparagines, and prolines. The amino acid sequence of this peptide was not determined. The primary structure near the active serine residue indicates that staphylococcal protease is related to the pancreatic serine proteases. However, it has little or no additional sequence homologies with these enzymes except for the regions near histidine-50 and aspartic acid - 91. These regions have striking similarities with the corresponding regions of protease B and the trypsin-like enzyme of Streptomyces griseus.  相似文献   

12.
1. Triosephosphate isomerase from Bacillus stearothermophilus is a dimeric enzyme comprising two chemically identical polypeptide chains. 2. The nearly complete amino acid sequence of the subunit polypeptide chain has been established from sequences of tryptic, chymotryptic and lysine-blocked tyrptic fragments of S-[2-14C]carboxymethylated enzyme. Overlaps not established by experimental data have been provisionally established from considerations of sequence homology with previously established sequences for the rabbit, chicken and coelacanth enzymes. The nearly complete sequence of the 249 residues is as follows. (See Text). 3. Comparison of the thermophile and chicken muscle enzymes shows that 40% of the residues are in identical sequence. 4. Correlation of the sequence of the thermophile enzyme with the three-dimensional structure of the muscle enzyme shows that residues in the catalytic site and in the subunit interface are strongly conserved. Possible correlations between sequence changes and thermal stabilisation of the dimeric structure are also noted.  相似文献   

13.
Glucoamylase and glucose oxidase fromAspergillus niger have been purified to homogeneity by chromatography on DEAE-cellulose and the purified enzymes have been used to investigate structural and antigenicity relationships. In structure, glucoamylase and glucose oxidase are glycoproteins containing 14% and 16% carbohydrate. Earlier methylation and reductive -elimination results have shown that glucoamylase has an unusual arrangement of carbohydrate residues, with 20 single mannose units and 25 di-, tri-, or tetrasaccharide chains of mannose, glucose, and galactose, all attached O-glycosidically to serine and threonine residues of the protein moiety. The antigenicity of the glucoamylase has now been found to reside predominantly in the types and arrangement of the carbohydrate chains. Glucose oxidase contains mannose, galactose, and glucosamine in the N-acetyl form in the native enzyme, but the complete structure of the carbohydrate chains has not yet been determined. The antigenicity of this enzyme does not reside in the carbohydrate units, but rather in the polypeptide chains of the two subunits of the enzyme. Glucose oxidase can be dissociated into subunits by mercaptoethanol and sodium dodecyl sulfate treatment, while glucoamylase cannot be dissociated, but undergoes only an unfolding of the polypeptide chain under these conditions. The subunits of glucose oxidase do not react with the anti-glucose oxidase antibodies, but the unfolded molecule and peptide fragments produced from glucoamylase by cyanogen bromide cleavage do react with antiglucoamylase antibodies.  相似文献   

14.
A bovine brain thyrotropin-releasing-factor (thyroliberin) deamidase has been purified 1100-fold to apparent homogeneity. Molecular weight estimates by gel filtration and sodium dodecylsulfate gel electrophoresis indicate that the enzyme consists of a single polypeptide chain of molecular weight of about 62 000-65 000. The enzyme is inactivated by sulfhydryl blocking agents. Serine proteinase inhibitors, phenylmethanesulfonyl fluoride and benzamidine, have no effect. Besides thyroliberin, the enzyme hydrolyzes peptide bonds involving the carboxyl group of proline residues in luliberin, tuftsin, angiotensin II, melanotropin, and neurotensin. Oxytocin, vasopressin, and bradykinin are not cleaved; they are, however, strong competitive inhibitors of thyroliberin deamidation. The specificity studies indicate that the enzyme is a "post-proline cleaving enzyme" which hydrolyzes peptides of the general structure, Yaa-Pro-Xaa, in which Xaa = amino acid, peptide, or amide (not Pro), and Yaa = N-blocked basic amino acid or a peptide sequence in which the C-terminal residue (i.e. the residue prior to Pro) is a basic amino acid such as His, Lys, or Arg. The enzyme is compared to other post-proline cleaving enzymes.  相似文献   

15.
Glucoamylase is a starch-hydrolyzing enzyme with a glycoprotein structure, used industrially for the conversion of starch to glucose, citric acid, corn syrups, and high-fructose sweeteners. This enzyme possesses an unusual type of structure in which many carbohydrate side chains are linked O-glycosidically to serine and threonine residues of the polypeptide chain. The carbohydrate side chains may be single monosaccharide residues or oligosaccharides of mannose, glucose, galactose, and in some cases N-acetylglucosamine. New data from experiments on the CNBr fragmentation of glucoamylase followed by chemical and immunological characterization of the fragments show that the carbohydrate side chains are distributed randomly along the polypeptide chain. Such a structure is appropriately termed a random model reprensentation for the glucoamylase molecule.  相似文献   

16.
Previous studies on Escherichia coli aspartate transcarbamoylase (ATCase) demonstrated that active, stable enzyme was formed in vivo from complementing polypeptides of the catalytic (c) chain encoded by gene fragments derived from the pyrBI operon. However, the enzyme lacked the allosteric properties characteristic of wild-type ATCase. In order to determine whether the loss of homotropic and heterotropic properties was attributable to the location of the interruption in the polypeptide chain rather than to the lack of continuity, we constructed a series of fragmented genes so that the breaks in the polypeptide chains would be dispersed in different domains and diverse regions of the structure. Also, analogous molecules containing circularly permuted c chains with altered termini were constructed for comparison with the ATCase molecules containing fragmented c chains. Studies were performed on four sets of ATCase molecules containing cleaved c chains at positions between residues 98 and 99, 121 and 122, 180 and 181, and 221 and 222; the corresponding circularly permuted chains had N termini at positions 99, 122, 181, and 222. All of the ATCase molecules containing fragmented or circularly permuted c chains exhibited the homotropic and heterotropic properties characteristic of the wild-type enzyme. Hill coefficients (n(H:)) and changes in them upon the addition of ATP and CTP were similar to those observed with wild-type ATCase. In addition, the conformational changes revealed by the decrease in sedimentation coefficient upon the addition of a bisubstrate analog were virtually identical to that for the wild-type enzyme. Differential scanning calorimetry showed that neither the breakage of the polypeptide chains nor the newly formed covalent bond between the termini in the wild-type enzyme had a significant impact on the thermal stability of the assembled dodecamers. The studies demonstrate that continuity of the polypeptide chain within structural domains is not essential for the assembly, activity, and allosteric properties of ATCase.  相似文献   

17.
A dipeptidase was isolated from hog kidney; it is the first enzyme described that has the capacity to cleave homocarnosine. It was purified to apparent homogeneity and split carnosine, anserine, and several other dipeptides in addition to homocarnosine. Homocarnosinase had a molecular weight of 57,000 as determined by sodium dodecyl sulfate-gel electrophoresis; it appeared to consist of a single polypeptide chain and did not contain sulfhydryl groups or serine residues essential to its activity. The enzyme was activated by Co2+ and by Mn2+, cobaltous ions being much more effective than manganous ions. Its isoelectric point was 5.6 and no evidence of isozymes was seen during isoelectric focusing. Homocarnosinase had a broader specificity, higher solubility, lower stability, and different metal ion sensitivity than hog kidney carnosinase (EC 3.4.13.3). Carnosinase was present in most tissues of the rat, whereas homocarnosinase was detected only in kidney, uterus, lung, and liver.  相似文献   

18.
Mitochondrial adenylate kinase has been purified 5400-fold from chicken liver extract in an overall yield of 36%. The purified enzyme has a specific activity of 810 U/mg, a molecular weight of 28 000, and the following amino acid composition: 21 aspartic acid or asparagine, 14 threonine, 17 serine, 27 glutamic acid or glutamine, 16 proline, 22 glycine, 22 alanine, 15 valine, 6 methionine, 11 isoleucine, 29 leucine, 5 tyrosine, 7 phenylalanine, 16 lysine, 7 histidine, 19 arginine, 3 half-cystine, and no tryptophan, totalling 257 residues. The purified enzyme has one disulfide bond and one sulfhydryl group. The disulfide bond is related to the active conformation of the enzyme, whereas the sulfhydryl group does not contribute to the enzyme activity. The sulfhydryl group is easily oxidized in the presence of Cu2+ resulting in the formation of dimer with about one half of the specific activity of the monomer. The enzyme is similar to porcine heart mitochondrial adenylate kinase in antigenicity but different from chicken cytosolic adenylate kinase. Mitochondrial adenylate kinase was synthesized in the mRNA-dependent rabbit reticulocyte lysate system programmed with total chicken liver RNA. The mobility in sodium dodecylsulfate gel electrophoresis of the product obtained in vitro was the same as that of the purified mitochondrial adenylate kinase. This evidence indicates that the mitochondrial adenylate kinase is synthesized as a polypeptide with a molecular weight indistinguishable from that of the mature protein.  相似文献   

19.
20.
Proteins L6 and L29 occupy closely adjacent sites in mammalian 60-S ribosomal subparticles and are easily cross-linked by intermolecular disulfide bond formation. For locating the interacting thiols within the polypeptide chains the dissociated proteins L6 and L29 obtained from the isolated disulfide complex were subjected to S-cleavage following [14C]cyanylation of the two cysteine residues. Four split products of the [14C]cyanylated proteins were isolated by dodecylsulfate gel electrophoresis. Two of these could be identified by autoradiography as the selectively labeled C-terminal fragments. For unequivocal assignment of the fragments to the parent proteins, a simple and generally applicable method of cleaving cyanylated proteins in polyacrylamide gel for subsequent diagonal analysis was developed. The experiments indicated that the sulfhydryl group of L6 interacting with L29 is located at a distance of approximately 80 amino acid residues from the N-terminus. In the intact ribosome this sequence contains a clostripain-sensitive and trypsin-sensitive portion of the protein more or less exposed at the ribosomal surface. In the case of protein L29, the interacting sulfhydryl group was located at a distance of approximately 40 amino acid residues from the C-terminal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号