首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Aton SJ  Herzog ED 《Neuron》2005,48(4):531-534
In mammals, the suprachiasmatic nuclei (SCN) of the hypothalamus act as a dominant circadian pacemaker, coordinating rhythms throughout the body and regulating daily and seasonal changes in physiology and behavior. This review focuses on the mechanisms that mediate synchronization of circadian rhythms between SCN neurons. Understanding how these neurons communicate as a network of circadian oscillators has begun to shed light on the adaptability and dysfunction of the brain's master clock.  相似文献   

3.
4.
The mammalian SCN contains a biological clock that drives remarkably precise circadian rhythms in vivo and in vitro. This study asks whether the cycle-to-cycle variability of behavioral rhythms in mice can be attributed to precision of individual circadian pacemakers within the SCN or their interactions. The authors measured the standard deviation of the cycle-to-cycle period from 7-day recordings of running wheel activity, Period1 gene expression in cultured SCN explants, and firing rate patterns of dispersed SCN neurons. Period variability of the intact tissue and animal was lower than single neurons. The median variability of running wheel and Period1 rhythms was less than 40 min per cycle compared to 2.1 h in firing rate rhythms of dispersed SCN neurons. The most precise SCN neuron, with a period deviation of 1.1 h, was 10 times noisier than the most accurate SCN explant (0.1 h) or mouse (0.1 h) but comparable to the least stable explant (2.1 h) and mouse (1.1 h). This variability correlated with intrinsic period in mice and SCN explants but not with single cells. Precision was unrelated to the amplitude of rhythms and did not change significantly with age up to 1 year after birth. Analysis of the serial correlation of cycle-to-cycle period revealed that approximately half of this variability is attributable to noise outside the pacemaker. These results indicate that cell-cell interactions within the SCN reduce pacemaker noise to determine the precision of circadian rhythms in the tissue and in behavior.  相似文献   

5.
6.
7.
In mammals, a master circadian pacemaker driving daily rhythms in behavior and physiology resides in the suprachiasmatic nucleus (SCN). The SCN contains multiple circadian oscillators that synchronize to environmental cycles and to each other in vivo. Rhythm production, an intracellular event, depends on more than eight identified genes. The period of the rhythms within the SCN also depends upon intercellular communication. Many other tissues also retain the ability to generate near 24 -h periodicities although their place in the organization of circadian timing is still unclear. This paper focuses on the tissue-, cellular- and molecular-level events that generate and entrain circadian rhythms in behavior in mammals and emphasizes the apparent differences between the SCN and peripheral oscillators.  相似文献   

8.
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus contains a major circadian pacemaker that imposes or entrains rhythmicity on other structures by generating a circadian pattern in electrical activity. The identification of "clock genes" within the SCN and the ability to dynamically measure their rhythmicity by using transgenic animals open up new opportunities to study the relationship between molecular rhythmicity and other well-documented rhythms within the SCN. We investigated SCN circadian rhythms in Per1-luc bioluminescence, electrical activity in vitro and in vivo, as well as the behavioral activity of rats exposed to a 6-hr advance in the light-dark cycle followed by constant darkness. The data indicate large and persisting phase advances in Per1-luc bioluminescence rhythmicity, transient phase advances in SCN electrical activity in vitro, and an absence of phase advances in SCN behavioral or electrical activity measured in vivo. Surprisingly, the in vitro phase-advanced electrical rhythm returns to the phase measured in vivo when the SCN remains in situ. Our study indicates that hierarchical levels of organization within the circadian timing system influence SCN output and suggests a strong and unforeseen role of extra-SCN areas in regulating pacemaker function.  相似文献   

9.
The suprachiasmatic nucleus (SCN) of the hypothalamus is the site of the pacemaker that controls circadian rhythms of a variety of physiological functions. Data strongly indicate the majority of the SCN neurons express self-sustaining oscillations that can be detected as rhythms in the spontaneous firing of individual neurons. The period of single SCN neurons in a dissociated cell culture is dispersed in a wide range (from 20h to 28h in rats), but that of the locomotor rhythm is close to 24h, suggesting individual oscillators are coupled to generate an averaged circadian period in the nucleus. Electrical coupling via gap junctions, glial regulation, calcium spikes, ephaptic interactions, extracellular ion flux, and diffusible substances have been discussed as possible mechanisms that mediate the interneuronal rhythm synchrony. Recently, GABA (γ-aminobutyric acid), a major neurotransmitter in the SCN, was reported to regulate cellular communication and to synchronize rhythms through GABAA receptors. At present, subsequent intracellular processes that are able to reset the genetic loop of oscillations are unknown. There may be diverse mechanisms for integrating the multiple circadian oscillators in the SCN. This article reviews the knowledge about the various circadian oscillations intrinsic to the SCN, with particular focus on the intercellular signaling of coupled oscillators. (Chronobiology International, 18(3), 371-387, 2001)  相似文献   

10.
Within the suprachiasmatic nucleus (SCN) of the mammalian hypothalamus is a circadian pacemaker that functions as a clock. Its endogenous period is adjusted to the external 24-h light-dark cycle, primarily by light-induced phase shifts that reset the pacemaker's oscillation. Evidence using a wide variety of neurobiological and molecular genetic tools has elucidated key elements that comprise the visual input pathway for SCN photoentrainment in rodents. Important questions remain regarding the intracellular signals that reset the autoregulatory molecular loop within photoresponsive cells in the SCN's retino-recipient subdivision, as well as the intercellular coupling mechanisms that enable SCN tissue to generate phase shifts of overt behavioral and physiological circadian rhythms such as locomotion and SCN neuronal firing rate. Multiple neurotransmitters, protein kinases, and photoinducible genes add to system complexity, and we still do not fully understand how dawn and dusk light pulses ultimately produce bidirectional, advancing and delaying phase shifts for pacemaker entrainment.  相似文献   

11.
The suprachiasmatic nucleus (SCN) of the hypothalamus is the site of the pacemaker that controls circadian rhythms of a variety of physiological functions. Data strongly indicate the majority of the SCN neurons express self-sustaining oscillations that can be detected as rhythms in the spontaneous firing of individual neurons. The period of single SCN neurons in a dissociated cell culture is dispersed in a wide range (from 20h to 28h in rats), but that of the locomotor rhythm is close to 24h, suggesting individual oscillators are coupled to generate an averaged circadian period in the nucleus. Electrical coupling via gap junctions, glial regulation, calcium spikes, ephaptic interactions, extracellular ion flux, and diffusible substances have been discussed as possible mechanisms that mediate the interneuronal rhythm synchrony. Recently, GABA (γ-aminobutyric acid), a major neurotransmitter in the SCN, was reported to regulate cellular communication and to synchronize rhythms through GABAA receptors. At present, subsequent intracellular processes that are able to reset the genetic loop of oscillations are unknown. There may be diverse mechanisms for integrating the multiple circadian oscillators in the SCN. This article reviews the knowledge about the various circadian oscillations intrinsic to the SCN, with particular focus on the intercellular signaling of coupled oscillators. (Chronobiology International, 18(3), 371–387, 2001)  相似文献   

12.
13.
Intracellular free Ca(2+) regulates diverse cellular processes, including membrane potential, neurotransmitter release, and gene expression. To examine the cellular mechanisms underlying the generation of circadian rhythms, nucleus-targeted and untargeted cDNAs encoding a Ca(2+)-sensitive fluorescent protein (cameleon) were transfected into organotypic cultures of mouse suprachiasmatic nucleus (SCN), the primary circadian pacemaker. Circadian rhythms in cytosolic but not nuclear Ca(2+) concentration were observed in SCN neurons. The cytosolic Ca(2+) rhythm period matched the circadian multiple-unit-activity (MUA)-rhythm period monitored using a multiple-electrode array, with a mean advance in phase of 4 hr. Tetrodotoxin blocked MUA, but not Ca(2+) rhythms, while ryanodine damped both Ca(2+) and MUA rhythms. These results demonstrate cytosolic Ca(2+) rhythms regulated by the release of Ca(2+) from ryanodine-sensitive stores in SCN neurons.  相似文献   

14.
15.
16.
A neural theory of the circadian pacemaker within the hypothalamic suprachiasmatic nuclei (SCN) is used to explain parametric data about mammalian operant behavior. The intensity, duration, and patterning of ultradian activity-rest cycles and the duration of circadian periods due to parametric (LL) and nonparametric (LD) lighting regimes are simulated. Paradoxical data about split rhythms and after-effects are explained using homeostatic and nonhomeostatic neural mechanisms that modulate pacemaker activity. These modulatory mechanisms enable the pacemaker to adjust to pervasive changes in its lighting regime, as during the passage of seasons, and to ultradian changes in internal metabolic conditions. The model circadian mechanisms are homologous to mechanisms that model hypothalamically mediated appetitive behaviors, such as eating. The theory thus suggests that both circadian and appetitive hypothalamic circuits are constructed from similar neural components. Mechanisms of transmitter habituation, opponent feedback interactions between on-cells and off-cells, homeostatic negative feedback, and conditioning are used in both the circadian and the appetitive circuits. Output from the SCN circadian pacemaker is assumed to modulate the sensitivity of the appetitive circuits to external and internal signals by controlling their level of arousal. Both underarousal and overarousal can cause abnormal behavioral syndromes whose properties have been found in clinical data. A model pacemaker can also be realized as an intracellular system.  相似文献   

17.
Circadian (ca. 24 hr) oscillations in expression of mammalian "clock genes" are found not only in the suprachiasmatic nucleus (SCN), the central circadian pacemaker, but also in peripheral tissues. Under constant conditions in vitro, however, rhythms of peripheral tissue explants or immortalized cells damp partially or completely. It is unknown whether this reflects an inability of peripheral cells to sustain rhythms, as SCN neurons can, or a loss of synchrony among cells. Using bioluminescence imaging of Rat-1 fibroblasts transfected with a Bmal1::luc plasmid and primary fibroblasts dissociated from mPer2(Luciferase-SV40) knockin mice, we monitored single-cell circadian rhythms of clock gene expression for 1-2 weeks. We found that single fibroblasts can oscillate robustly and independently with undiminished amplitude and diverse circadian periods. Cells were partially synchronized by medium changes at the start of an experiment, but due to different intrinsic periods, their phases became randomly distributed after several days. Closely spaced cells in the same culture did not have similar phases, implying a lack of functional coupling among cells. Thus, like SCN neurons, single fibroblasts can function as independent circadian oscillators; however, lack of oscillator coupling in dissociated cell cultures leads to a loss of synchrony among individual cells and damping of the ensemble rhythm at the population level.  相似文献   

18.
The circadian pacemaker of the SCN is a heterogeneous structure containing many single-cell oscillators that display phase differences in gene expression and electrical activity rhythms. Thus far, it is unknown how single neurons contribute to the population signal measured from the SCN. The authors used single-unit electrical activity rhythms that have previously been recorded in SCN slices and investigated in simulation studies how changes in pattern shape and distribution of single neurons alter the ensemble activity rhythm of the SCN. The results were compared with recorded ensemble rhythms. The simulations show that single units should be distributed in phase to render the recorded multiunit waveform and that different distributions can account for the multiunit pattern of the SCN, including a bimodal distribution. Vice versa, the authors show that the single-unit distribution cannot be inferred from the ensemble pattern. Photoperiodic encoding by the SCN relies on changes in waveform of the neuronal output from the SCN and received special attention in this study's simulations. The authors show that a broadening or narrowing of the multiunit pattern can be based on changes in phase differences between neurons, as well as on changes in the circadian pattern of individual neurons. However, these mechanisms give rise to differences in the maximal discharge level of the multiunit pattern, leading to testable predictions to distinguish between the 2 mechanisms. If single units broaden their activity pattern in long days, the maximum frequency of the multiunit activity should increase, while an increase in phase difference between the single-unit activity rhythms should lead to a decrement in maximum frequency. The simulations also show that coding for day-length by an evening and morning oscillator is not self-evident and will only work under a limited set of conditions in which the distribution within each component and temporal distance between the components is taken into account. While the simulations were based on single-cell and multiunit electrical activity patterns, they are also relevant for understanding the relation between single-cell and population molecular expression profiles.  相似文献   

19.
Daily rhythms in mammals are controlled by the circadian system, which is a collection of biological clocks regulated by a central pacemaker within the suprachiasmatic nucleus (SCN) of the anterior hypothalamus. Changes in SCN function have pronounced consequences for behaviour and physiology; however, few studies have examined whether individual differences in circadian behaviour reflect changes in SCN function. Here, PERIOD2::LUCIFERASE mice were exposed to a behavioural assay to characterize individual differences in baseline entrainment, rate of re-entrainment and free-running rhythms. SCN slices were then collected for ex vivo bioluminescence imaging to gain insight into how the properties of the SCN clock influence individual differences in behavioural rhythms. First, individual differences in the timing of locomotor activity rhythms were positively correlated with the timing of SCN rhythms. Second, slower adjustment during simulated jetlag was associated with a larger degree of phase heterogeneity among SCN neurons. Collectively, these findings highlight the role of the SCN network in determining individual differences in circadian behaviour. Furthermore, these results reveal novel ways that the network organization of the SCN influences plasticity at the behavioural level, and lend insight into potential interventions designed to modulate the rate of resynchronization during transmeridian travel and shift work.  相似文献   

20.
In mammals, the part of the nervous system responsible for most circadian behavior can be localized to a pair of structures in the hypothalamus known as the suprachiasmatic nucleus (SCN). Importantly, when SCN neurons are removed from the organism and maintained in a brain slice preparation, they continue to generate 24h rhythms in electrical activity, secretion, and gene expression. Previous studies suggest that the basic mechanism responsible for the generation of these rhythms is intrinsic to individual cells in the SCN. If we assume that individual cells in the SCN are competent circadian oscillators, it is obviously important to understand how these cells communicate and remain synchronized with each other. Cell-to-cell communication is clearly necessary for conveying inputs to and outputs from the SCN and may be involved in ensuring the high precision of the observed rhythm. In addition, there is a growing body of evidence that a number of systems-level phenomena could be dependent on the cellular communication between circadian pacemaker neurons. It is not yet known how this cellular synchronization occurs, but it is likely that more than one of the already proposed mechanisms is utilized. The purpose of this review is to summarize briefly the possible mechanisms by which the oscillatory cells in the SCN communicate with each other. (Chronobiology International, 18(4)579-600, 2001)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号