首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Interparental recombination between injected T4 DNA molecules is indetectable for incomplete petite phages (carrying a terminally deficient genome and therefore unable to circularize) as well as for genetically complete phages. The nonvialbe petite phages can individually replicate their DNA repeatedly, and they aso undergo multiplicity reconstitution, producing complete phages, provided that a host bacterium is infected by several petite particles that carry genetically complementary segments of DNA. The formation of complete phages in multiplicity reconstitution must be due to recombination among incomplete progeny fragments, i.e., partial replicas of the T4 genomes. It evidently does not result from interparental recombination. To test for interparental recombination, light bacteria (containing no bromouracil) were simultaneously infected in light medium with light radioactive phage in minority (usually less than one per cell) and heavy (bromouracil-labeled) phage in majority (usually about nine per cell). Any interparental recombination should, under these circumstances of infection, head to movement of the radioactive label of the minority light phage DNA to a position of higher density. That possibility was not observed.  相似文献   

3.
In vivo labeling of DNA with thymidine and thymidine analogs has long been a cornerstone of replication studies. Unfortunately, yeast lack a thymidine salvage pathway and thus do not incorporate exogenous thymidine. Specifically, yeast neither efficiently take up exogenous thymidine from their growth media nor phosphorylate it to thymidylate, the precursor of dTTP. We have overcome these problems in fission yeast by expressing the human equilibrative nucleoside transporter 1 (hENT1) along with herpes simplex virus thymidine kinase (tk). hENT1 tk cells are healthy and efficiently incorporate exogenous thymidine and thymidine analogs. We present protocols for labeling DNA with tritiated thymidine, for in situ detection of incorporated BrdU by immunofluorescence, for double labeling with CldU and IdU, for CsCl gradient separation of IdU-labeled DNA, and for using hENT1 and tk as both positive and negative selection markers.  相似文献   

4.
New mutants of T4 have been isolated by using a strain of Escherichia coli lacking thymidine kinase activity. These T4 mutants, designated tk, are able to grow on this E. coli strain under light on plates containing 5-bromodeoxyuridine and were all found to be unable to induce thymidine kinase (ATP: thymidine 5'-phosphotransferase, EC 2.7.1.21). All of these tk mutants fall into one complementation group which maps just to the right of rI on the standard T4 genetic map, far from most other genes coding for enzymes involved in pyrimidine metabolism. The tk mutants grow as well as wild-type T4, indicating that thymidine kinase is a non-essential enzyme.  相似文献   

5.
Isolation of functional cDNA clones for human thymidylate synthase   总被引:8,自引:0,他引:8  
Thymidine auxotrophic mutants of mouse FM3A cells due to thymidylate synthase deficiency can be transformed into prototrophs by DNA-mediated gene transfer using total human DNA (Ayusawa, D., Shimizu, K., Koyama, H., Takeishi, K., and Seno, T. (1983) J. Biol. Chem. 258, 48-53). From one such transformed cell clone, cloned recombinant lambda phages containing DNA fragments were obtained recently that were concluded by circumstantial genetic evidence to have been derived from the human thymidylate synthase gene (Takeishi, K., Ayusawa, D., Kaneda, S., Shimizu, K., and Seno, T. (1984) J. Biochem. (Tokyo) 95, 1477-1483). Using a DNA segment derived from the cloned genomic DNA fragment and free of repetitive sequences as a probe, functional cDNA corresponding to thymidylate synthase mRNA could be cloned from a cDNA library of SV40 transformed human fibroblasts constructed by Okayama and Berg (Okayama, H. and Berg, P. (1983) Mol. Cell. Biol. 3, 280-289). The cloned cDNA plasmid containing an insert of approximately 1.7-kilobase transformed mouse thymidine auxotrophic mutant cells to thymidine prototrophic cells at a frequency of 2-3 transformants/micrograms of DNA/10(5) cells, a value almost comparable to the highest so far reported. The resultant transformants retained the introduced cDNA and expressed human thymidylate synthase protein sufficient for supporting normal growth of otherwise auxotrophic mouse cells.  相似文献   

6.
Fragments of African green monkey (Cercopithecus aethiops) DNA (3.5 to 18.0 kilobases) were inserted downstream from the thymidine kinase (TK, tk) coding region in pTK206/SV010, a gene construct which lacks both copies of the hexanucleotide 5'-AATAAA-3' and contains a simian virus 40 origin of replication, allowing it to replicate in Cos-1 cells. No polyadenylated tk mRNA was detected in Cos-1 cells transfected by pTK206/SV010. The ability of simian DNA fragments to restore tk gene expression was examined by measuring the incorporation of [125I]iododeoxycytidine into DNA in Cos-1 cells transfected by pTK206/SV010 insertion derivatives. tk gene expression was restored by the insertion in 56 of the 67 plasmids analyzed, and the level of expression equaled or exceeded that obtained with the wild-type tk gene in 30 of these. In all plasmids examined that showed restoration of tk gene expression, polyadenylated tk mRNA of discrete size was detected. The sizes of these tk mRNAs were consistent with the existence of processing and polyadenylation signals within the inserted DNA fragments. The frequency with which inserted fragments restored tk gene expression suggests that the minimal signal for processing and polyadenylation is a hexanucleotide (AAUAAA or a similar sequence). LTK- cells were biochemically transformed to TK+ with representative insertion constructs. pTK206/SV010 transformed LTK- cells at a very low frequency; the frequency of transformation with insertion derivatives was 40 to 12,000 times higher.  相似文献   

7.
Cultured rat cells deficient in endogenous thymidine kinase activity (tk) were stably transformed with a recombination-indicator DNA substrate constructed in vitro by rearrangement of the herpes simplex virus tk gene sequences into a partially redundant permutation of the functional gene. The recombination-indicator DNA did not express tk, but was designed to allow formation of a functional tk gene via homologous recombination. A clonal cell line (519) was isolated that harbored several permuted herpes simplex virus tk genes. 519 cells spontaneously produced progeny that survived in medium containing hypoxanthine, aminopterin, and thymidine. Acquisition of resistance to hypoxanthine, aminopterin, and thymidine was accompanied by the rearrangement of the defective tk gene to functional configuration. The rearrangement apparently occurred by unequal exchange between one permuted tk gene and a replicated copy of itself. Recombination was between 500-base-pair tracts of DNA sequence homology that were separated by 3.4 kilobases. Exchanges occurred spontaneously at a frequency of approximately 5 X 10(-6) events per cell per generation. Recombination also mediated reversion to the tk- phenotype; however, the predominant mechanism by which cells escaped death in the presence of drugs rendered toxic by thymidine kinase was not recombination, but rather inactivation of the intact tk gene.  相似文献   

8.
The classical T-even bacteriophages recognize host cells with their long tail fibers. Gene products 35, 36, and 37 constitute the distal moiety of these fibers. The free ends of the tail fibers, which are formed by the CO2H terminus of gene product 37, possess the host range determinants. It was found that 4 out of 10 different strains of Escherichia coli K-12 contained regions of chromosomal DNA which hybridized with a probe consisting of genes 35, 36, and 37 of the T-even phage K3. From one strain this homologous DNA, which was associated with an EcoRI fragment of about 5 kilobases, was cloned into plasmid pUC8. Two independently recovered hybrid plasmids had undergone a peculiar rearrangement which resulted in the loss of about 3 kilobases of cloned DNA and a duplication of both the vector and the remaining chromosomal DNA. The mechanisms causing this duplication-deletion may be related to that of transposases. The cloned DNA was capable of recombination with phage T4 gene 36 and a phage T2 gene 37 amber mutant. DNA sequencing revealed the existence of regions of identity between the cloned DNA and genes 36 and 37 of phage T2. In addition, after growth of a derivative of phage K3 on a strain harboring T2 DNA, it was found that this phage contained the same parts of the T2 tail fiber genes which had been recovered from the bacterial chromosome. There appears to be little doubt that the phage had picked up this DNA from the host. The possibility is considered that a repertoire of parts of genes 36 and 37 of various T-even-type phages is present in their hosts, allowing the former to change their host ranges.  相似文献   

9.
A method was devised for identifying nonlethal mutants of T4 bacteriophage which lack the capacity to induce degradation of the deoxyribonucleic acid (DNA) of their host, Escherichia coli. If a culture is infected in a medium containing hydroxyurea (HU), a compound that blocks de novo deoxyribonucleotide biosynthesis by interacting with ribonucleotide reductase, mutant phage that cannot establish the alternate pathway of deoxyribonucleotide production from bacterial DNA will fail to produce progeny. The progeny of 100 phages that survived heavy mutagenesis with hydroxylamine were tested for their ability to multiply in the presence of HU. Four of the cultures lacked this capacity. Cells infected with one of these mutants, designated T4nd28, accumulated double-stranded fragments of host DNA with a molecular weight of approximately 2 x 10(8) daltons. This mutant failed to induce T4 endonuclease II, an enzyme known to produce single-strand breaks in double-stranded cytosine-containing DNA. The properties of nd28 give strong support to an earlier suggestion that T4 endonuclease II participates in host DNA degradation. The nd28 mutation mapped between T4 genes 32 and 63 and was very close to the latter gene. It is, thus, in the region of the T4 map that is occupied by genes for a number of other enzymes, including deoxycytidylate deaminase, thymidylate synthetase, dihydrofolate reductase, and ribonucleotide reductase, that are nonessential to phage production in rich media.  相似文献   

10.
Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells.   总被引:342,自引:0,他引:342  
Treatment of Ltk?, mouse L cells deficient in thymidine kinase (tk), with Bam I restriction endonuclease cleaved DNA from herpes simplex virus-1 (HSV-1) produced tk+ clones with a frequency of 10?6/2 μg of HSV-1 DNA. Untreated cells or cells treated with Eco RI restriction endonuclease fragments produced no tk+ clones under the same conditions. The thymidine kinase activities of four independently derived clones were characterized by biochemical and serological techniques. By these criteria, the tk activities were found to be identical to HSV-1 tk and different from host wildtype tk. The tk+ phenotype was stable over several hundred cell generations, although the rate of reversion to the tk? phenotype, as judged by cloning efficiency in the presence of bromodeoxyuridine, was high (1–5 × 10?3). HSV-1 DNA Bam restriction fragments were separated by gel electrophoresis, and virtually all activity, as assayed by transfection, was found to reside in a 3.4 kb fragment. Transformation efficiency with the isolated fragment is 20 fold higher per gene equivalent than with the unfractionated total Bam digest. These results prove the usefulness of transfection assays as a means for the bioassay and isolation of restriction fragments carrying specific genetic information. Cells expressing HSV-1 tk may also provide a useful model system for the detailed analysis of eucaryotic and viral gene regulation.  相似文献   

11.
12.
A DNA transformed mouse cell line, generated by the microinjection of a pBR322 plasmid containing the herpes thymidine kinase (tk) gene, was observed to exhibit a high frequency of DNA rearrangement at the site of exogenous DNA integration. The instability in this cell line does not appear to be mediated by the tk inserts or the immediately adjacent mouse DNA, but instead may be a consequence of the larger host environment at the chromosomal site of tk insertion. Results obtained from restriction analysis, in situ chromosome hybridizations, and cesium chloride density-gradient fractionations indicate that the tk inserts are organized as a single cluster of direct and inverted repeats embedded within pericentromeric satellite DNA. To determine the molecular identity of the flanking host sequences, one of the mouse-tk junction fragments was cloned, and subsequent restriction and sequence analyses revealed that this DNA fragment consists almost entirely of classical mouse satellite DNA. On the basis of these observations, we suggest that the instability in this cell line may reflect the endogenous instability or fluidity of satellite DNA.  相似文献   

13.
Amber mutants of bacteriophage T4 have been isolated that induce thymidine kinase activity only after infection of a strain of Escherichia coli carrying a suppressor mutation. The activity induced when one of these mutants infected this suppressor strain is much more heat sensitive than the activity induced by wild-type T4. This indicates that this amber mutation lies within the structural gene for thymidine kinase. This gene is between fI and v on the standard T4 genetic map. A mutant of tt4 that is unable to induce thymidine kinase activity incorporates only about one-eighth as much thymidine into its DNA as phage that do induce thymidine kinase. This contrasts to the findings that the total thymidine kinase activity in extracts prepared from cells infected with phage able to induce thymidine kinase in only twice as great as the activity in cells infected with the mutant unable to induce the enzyme.  相似文献   

14.
Thymine auxotrophs of Bacillus subtilis strains lysogenic for temperate bacteriophage SP beta c2 were transformed to prototrophy by DNA from related phage phi 3T. During transformation, the phi 3T-encoded thymidylate synthetase gene, thyP3, became integrated into the extreme right end of the SP beta c2 prophage near the bacterial citK gene. Upon heat induction, the transformed B. subtilis cells released SP beta c2T phages that could lysogenize thymine auxotrophs and convert them to prototrophy. Comparison of restriction endonuclease fragments of DNAs from SP beta c2 and SP beta c2T phages revealed that the latter contained a large region of deletion and substitution near the center of the chromosome. This region included the phage attachment site on the SP beta c2 genome.  相似文献   

15.
Deletion and point mutants of T3 have been isolated and used to show that the early region of T3 DNA is organized in the same way as that of T7 DNA. Homologous early RNAs and proteins of the two phages have been identified by electrophoresis on polyacrylamide gels in the presence of sodium dodecyl sulfate. Both phages have five early mRNA's, numbered 0.3, 0.7, 1,1.1 and 1.3 from left to right, although no T3 protein that corresponds to the 1.1 protein of T7 has yet been identified. In general, corresponding early RNAs and proteins of the two phages migrate differently on gels, indicating that they differ in molecular weight and/or conformation. In both T7 and T3, gene 0.3 is responsible for overcoming the DNA restriction system of the host, gene 0.7 specifies a protein kinase, gene 1 specifies a phage-specific RNA polymerase, and gene 1.3 specifies a polynucleotide ligase. The 0.3 protein of T3 is responsible for the S-adenosylmethionine cleaving activity (SAMase) induced after T3 (but not T7) infection. However, cleaving of S-adenosylmethionine does not appear to be the primary mechanism by which T3 overcomes host restriction, since at least one mutant of T3 has lost the SAMase activity without losing the ability to overcome host restriction.  相似文献   

16.
The pathway for the acquisition of thymidylate in the obligate bacterial parasite Rickettsia prowazekii was determined. R. prowazekii growing in host cells with or without thymidine kinase failed to incorporate into its DNA the [3H]thymidine added to the culture. In the thymidine kinase-negative host cells, the label available to the rickettsiae in the host cell cytoplasm would have been thymidine, and in the thymidine kinase-positive host cells, it would have been both thymidine and TMP. Further support for the inability to utilize thymidine was the lack of thymidine kinase activity in extracts of R. prowazekii. However, [3H]uridine incorporation into the DNA of R. prowazekii was demonstrable (973 +/- 57 dpm/3 x 10(8) rickettsiae). This labeling of rickettsial DNA suggests the transport of uracil, uridine, uridine phosphates (UXP), or 2'-deoxyuridine phosphates, the conversion of the labeled precursor to thymidylate, and subsequent incorporation into DNA. This is supported by the demonstration of thymidylate synthase activity in extracts of R. prowazekii. The enzyme was determined to have a specific activity of 310 +/- 40 pmol/min/mg of protein and was inhibited greater than or equal to 70% by 5-fluoro-dUMP. The inability of R. prowazekii to utilize uracil was suggested by undetectable uracil phosphoribosyltransferase activity and by its inability to grow (less than 10% of control) in a uridine-starved mutant cell line (Urd-A) supplemented with 50 microM to 1 mM uracil. In contrast, the rickettsiae were able to grow in Urd-A cells that were uridine starved and supplemented with 20 microM uridine (117% of control). However, no measurable uridine kinase activity could be measured in extracts of R. prowazekii. Normal rickettsial growth (92% of control) was observed when the host cell was blocked with thymidine so that the host cell's dUXP pool was depressed to a level inadequate for growth and DNA synthesis in the host cell. Taken together, these data strongly suggest that rickettsiae transport UXP from the host cell's cytoplasm and that they synthesize TTP from UXP.  相似文献   

17.
Y Wang  C K Mathews 《Journal of virology》1989,63(11):4736-4743
The roles of bacteriophage T4-encoded thymidylate synthase and dihydrofolate reductase as virion structural components have been further investigated. Two mutants, del(63-32)7 and del(63-32)9, bearing deletions in the gene 63 to 32 region of the T4 genome, were characterized by Southern blotting analysis, as well as by enzyme and immunological assays. Our results have confirmed the original report of Homyk and Weil (Virology 61:505-523, 1974) that del7 and del9 each carries a deletion of about 4.0 kilobases, which totally eliminates the frd gene, encoding dihydrofolate reductase, and the td gene, encoding thymidylate synthase. With the well-characterized deletion mutants, along with newly prepared antisera against T4-encoded thymidylate synthase and dihydrofolate reductase, we have reevaluated the experimental results supporting the idea that T4-induced dihydrofolate reductase and thymidylate synthase are essential T4 baseplate components and antigenic determinants of phage particles. These deletion mutant phages are not targets for neutralization by antisera against either dihydrofolate reductase or thymidylate synthase purified from cloned genes. Furthermore, these newly prepared antisera also cannot neutralize the infectivity of T4D. Those results suggest that the phage-neutralizing components in the old antisera used in the earlier studies were not antibodies against either dihydrofolate reductase or thymidylate synthase but were antibodies against minor components of the purified enzyme preparations. Study of the biological properties of the deletion mutants indicates that T4-induced thymidylate synthase and dihydrofolate reductase play significant roles in growth of the phage beyond their known roles in nucleotide biosynthesis, even though they are apparently not essential for phage viability. The deletion mutants should be useful in defining these roles.  相似文献   

18.
19.
Synthesis of deoxythymidylate (dTMP) is a rate-limiting step in DNA synthesis; there are two main enzymes which are responsible for dTMP production, thymidylate synthetase (ts) and thymidine kinase (tk). Both enzymes were studied during several differentiation processes of the myxomycete Physarum polycephalum. In all stages of proliferation (microplasmodia, macroplasmodia, germinating microsclerotia and germinating spores) tk is the dominant enzyme in terms of activity, whereas ts is the predominant enzyme in quiescent stages (microsclerotia, sporangia, respectively spores); this is expressed by calculating the tk/ts ratio. This ratio is greater than 1 during proliferation and much less than 1 during quiescence. Our results clearly show that ts is the basic enzyme for dTMP production during all differentiation stages, whereas tk, if required, is shut on and represents an additional potential for dTMP synthesis during rapid proliferation.  相似文献   

20.
M Wigler  A Pellicer  S Silverstein  R Axel 《Cell》1978,14(3):725-731
Previous studies from our laboratories have demonstrated the feasibility of transferring the thymidine kinase (tk) gene from restriction endonuclease-generated fragments of herpes simplex virus (HSV) DNA to cultured mammalian cells. In this study, high molecular weight DNA from cells containing only one copy of the HSV gene coding for tk was successfully used to transform L+K-cells to the tk+ phenotype. The acquired phenotype was demonstrated to be donor-derived by analysis of the electrophoretic mobility of the tk activity, and the presence of HSV DNA sequences in the recipient cells was demonstrated. In companion experiments, we used high molecular weight DNA derived from tissues and cultured cells of a variety of species to transfer tk activity. The tk+ mouse cells transformed with human DNA were shown to express human type tk activity as determined by isoelectric focusing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号