首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.

Background

Interleukin-1 (IL-1) is a cytokine involved in the initiation and amplification of the defence response in infectious and inflammatory diseases. IL-1 receptor antagonist (IL-1ra) is an inactive member of the IL-1 family and represents one of the most potent mechanisms for controlling IL-1-dependent inflammation. IL-1ra has proven effective in the therapy of acute and chronic inflammatory diseases in experimental animal models and also in preliminary clinical trials. However, optimisation of therapeutic schedules is still needed. For instance, the use of drug delivery systems targeting specific mucosal sites may be useful to improve topical bioavailability and avoid side effects associated with systemic administration.

Results

In order to develop systems for the delivery of IL-1ra to mucosal target sites, a Streptococcus gordonii strain secreting human IL-1ra was constructed. The recombinant IL-1ra produced by S. gordonii was composed of the four amino acid residues RVFP of the fusion partner at the N-terminus, followed by the mature human IL-1ra protein. RFVP/IL-1ra displayed full biological activity in vitro in assays of inhibition of IL-1β-induced lymphocyte proliferation and was released by recombinant S. gordonii in vivo both at the vaginal and the gastrointestinal mucosa of mice. RFVP/IL-1ra appeared beneficial in the model of ulcerative colitis represented by IL-2-/- mice (knock-out for the interleukin-2 gene), as shown by the body weight increase of IL-2-/- mice locally treated with S. gordonii producing RFVP/IL-1ra.

Conclusions

These results indicate that recombinant S. gordonii can be successfully used as a delivery system for the selective targeting of mucosal surfaces with therapeutic proteins.  相似文献   

2.
Secondary pneumococcal pneumonia is a serious complication during and shortly after influenza infection. We established a mouse model to study postinfluenza pneumococcal pneumonia and evaluated the role of IL-10 in host defense against Streptococcus pneumoniae after recovery from influenza infection. C57BL/6 mice were intranasally inoculated with 10 median tissue culture infective doses of influenza A (A/PR/8/34) or PBS (control) on day 0. By day 14 mice had regained their normal body weight and had cleared influenza virus from the lungs, as determined by real-time quantitative PCR. On day 14 after viral infection, mice received 10(4) CFU of S. pneumoniae (serotype 3) intranasally. Mice recovered from influenza infection were highly susceptible to subsequent pneumococcal pneumonia, as reflected by a 100% lethality on day 3 after bacterial infection, whereas control mice showed 17% lethality on day 3 and 83% lethality on day 6 after pneumococcal infection. Furthermore, 1000-fold higher bacterial counts at 48 h after infection with S. pneumoniae and, particularly, 50-fold higher pulmonary levels of IL-10 were observed in influenza-recovered mice than in control mice. Treatment with an anti-IL-10 mAb 1 h before bacterial inoculation resulted in reduced bacterial outgrowth and markedly reduced lethality during secondary bacterial pneumonia compared with those in IgG1 control mice. In conclusion, mild self-limiting influenza A infection renders normal immunocompetent mice highly susceptible to pneumococcal pneumonia. This increased susceptibility to secondary bacterial pneumonia is at least in part caused by excessive IL-10 production and reduced neutrophil function in the lungs.  相似文献   

3.
Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, and sepsis. Pneumococci can be divided into >90 serotypes that show differences in the pathogenicity and invasiveness. We tested the hypotheses that the innate immune inflammasome pathway is involved in fighting pneumococcal pneumonia and that some invasive pneumococcal types are not recognized by this pathway. We show that human and murine mononuclear cells responded to S. pneumoniae expressing hemolytic pneumolysin by producing IL-1β. This IL-1β production depended on the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. Some serotype 1, serotype 8, and serotype 7F bacteria, which have previously been associated with increased invasiveness and with production of toxins with reduced hemolytic activity, or bacterial mutants lacking pneumolysin did not stimulate notable IL-1β production. We further found that NLRP3 was beneficial for mice during pneumonia caused by pneumococci expressing hemolytic pneumolysin and was involved in cytokine production and maintenance of the pulmonary microvascular barrier. Overall, the inflammasome pathway is protective in pneumonia caused by pneumococci expressing hemolytic toxin but is not activated by clinically important pneumococcal sequence types causing invasive disease. The study indicates that a virulence factor polymorphism may substantially affect the recognition of bacteria by the innate immune system.  相似文献   

4.
Enhanced granulopoietic activity is crucial for host defense against bacterial pneumonia. Alcohol impairs this response. The underlying mechanisms remain obscure. G-CSF produced by infected lung tissue plays a key role in stimulating bone marrow granulopoiesis. This study investigated the effects of alcohol on G-CSF signaling in the regulation of marrow myeloid progenitor cell proliferation in mice with Streptococcus pneumoniae pneumonia. Chronic alcohol consumption plus acute alcohol intoxication suppressed the increase in blood granulocyte counts following intrapulmonary challenge with S. pneumoniae. This suppression was associated with a significant decrease in bone marrow granulopoietic progenitor cell proliferation. Alcohol treatment significantly enhanced STAT3 phosphorylation in bone marrow cells of animals challenged with S. pneumoniae. In vitro experiments showed that G-CSF-induced activation of STAT3-p27(Kip1) pathway in murine myeloid progenitor cell line 32D-G-CSFR cells was markedly enhanced by alcohol exposure. Alcohol dose dependently inhibited G-CSF-stimulated 32D-G-CSFR cell proliferation. This impairment of myeloid progenitor cell proliferation was not attenuated by inhibition of alcohol metabolism through either the alcohol dehydrogenase pathway or the cytochrome P450 system. These data suggest that alcohol enhances G-CSF-associated STAT3-p27(Kip1) signaling, which impairs granulopoietic progenitor cell proliferation by inducing cell cycling arrest and facilitating their terminal differentiation during the granulopoietic response to pulmonary infection.  相似文献   

5.
Eradication of bacteria in the lower respiratory tract depends on the coordinated expression of proinflammatory cytokines and consequent neutrophilic inflammation. To determine the roles of the NF-kappaB subunit RelA in facilitating these events, we infected RelA-deficient mice (generated on a TNFR1-deficient background) with Streptococcus pneumoniae. RelA deficiency decreased cytokine expression, alveolar neutrophil emigration, and lung bacterial killing. S. pneumoniae killing was also diminished in the lungs of mice expressing a dominant-negative form of IkappaBalpha in airway epithelial cells, implicating this cell type as an important locus of NF-kappaB activation during pneumonia. To study mechanisms of epithelial RelA activation, we stimulated a murine alveolar epithelial cell line (MLE-15) with bronchoalveolar lavage fluid (BALF) harvested from mice infected with S. pneumoniae. Pneumonic BALF, but not S. pneumoniae, induced degradation of IkappaBalpha and IkappaBbeta and rapid nuclear accumulation of RelA. Moreover, BALF-induced RelA activity was completely abolished following combined but not individual neutralization of TNF and IL-1 signaling, suggesting either cytokine is sufficient and necessary for alveolar epithelial RelA activation during pneumonia. Our results demonstrate that RelA is essential for the host defense response to pneumococcus in the lungs and that RelA in airway epithelial cells is primarily activated by TNF and IL-1.  相似文献   

6.
Inhibitory factors towards IL-1 have been identified in the urine and in the supernatants of human monocyte cultures and have been shown to act as receptor antagonists. We have investigated whether a natural inhibitor purified from human urine (uIL-1ra) and a recombinant molecule expressed using the gene for an IL-1 antagonist isolated from monocytes (rIL-1ra) can alter responses to human rIL-1 alpha in organ cultures of fetal rat long bones and neonatal mouse calvariae. The two preparations probably contained similar or identical molecules, because an antibody to rIL-1ra reacted with uIL-1ra by Western blot analysis. uIL-1ra and rIL-1ra specifically blocked stimulation of bone resorption by rIL-1 in both culture systems, as well as the increase in PGE2 production in cultured calvariae. Resorptive effects of parathyroid hormone and TNF-alpha were not blocked. The uIL-1ra preparation had some intrinsic resorbing activity, but on gel chromatography this appeared in fractions that eluted earlier than uIL-1ra. Concentration ratios of rIL-1ra to rIL-1 as low as 10 could block the resorptive response of fetal rat long bones, whereas concentration ratios of 100 to 1000 were required to block IL-1 action on neonatal mouse calvariae. The inhibitory effects appeared to be competitive, because increasing concentrations of IL-1 overcame the block of bone resorption in both systems and the inhibition of PGE2 production in calvariae.  相似文献   

7.
Interleukin (IL)-12 is a critical cytokine in the T helper (Th)1 response and host defense against intracellular microorganisms, while its role in host resistance to extracellular bacteria remains elusive. In the present study, we elucidated the role of IL-12 in the early-phase host defense against acute pulmonary infection with Streptococcus pneumoniae, a typical extracellular bacterium, using IL-12p40 gene-disrupted (IL-12p40KO) mice. IL-12p40KO mice were highly susceptible to S. pneumoniae infection, as indicated by the shortened survival time, which was completely restored by the replacement therapy with recombinant (r) IL-12, and increased bacterial counts in the lung. In these mice, recruitment of neutrophils in the lung was significantly attenuated when compared to that in wild-type (WT) mice, which correlated well with the reduced production of macrophage inflammatory protein (MIP-2) and tumor necrosis factor (TNF)-alpha in the infected tissues at the early phase of infection. In vitro synthesis of both cytokines by S. pneumoniae-stimulated lung leukocytes was significantly lower in IL-12p40KO mice than in WT mice, and addition of rIL-12 or interferon (IFN)-gamma restored the reduced production of MIP-2 and TNF-alpha in IL-12p40KO mice. Neutralizing anti-IFN-gamma monoclonal antibody (mAb) significantly decreased the effect of rIL-12. Anti-IFN-gamma mAb shortened the survival time of infected mice and reduced the recruitment of neutrophils and production of MIP-2 and TNF-alpha in the lungs. Our results indicated that IL-12p40 plays a critical role in the early-phase host defense against S. pneumoniae infection by promoting the recruitment of neutrophils to the infected tissues.  相似文献   

8.
We investigated the synergism between influenza virus and Streptococcus pneumoniae, particularly the role of deletions in the stalk region of the neuraminidase (NA) of H2N2 and H9N2 avian influenza viruses. Deletions in the NA stalk (ΔNA) had no effect on NA activity or on the adherence of S. pneumoniae to virus-infected human alveolar epithelial (A549) and mouse lung adenoma (LA-4) cells, although it delayed virus elution from turkey red blood cells. Sequential S. pneumoniae infection of mice previously inoculated with isogenic recombinant H2N2 and H9N2 influenza viruses displayed severe pneumonia, elevated levels of intrapulmonary proinflammatory responses, and death. No differences between the WT and ΔNA mutant viruses were detected with respect to effects on postinfluenza pneumococcal pneumonia as measured by bacterial growth, lung inflammation, morbidity, mortality, and cytokine/chemokine concentrations. Differences were observed, however, in influenza virus-infected mice that were treated with oseltamivir prior to a challenge with S. pneumoniae. Under these circumstances, mice infected with ΔNA viruses were associated with a better prognosis following a secondary bacterial challenge. These data suggest that the H2N2 and H9N2 subtypes of avian influenza A viruses can contribute to secondary bacterial pneumonia and deletions in the NA stalk may modulate its outcome in the context of antiviral therapy.  相似文献   

9.
To determine the role of endogenous IL-18 during pneumonia, IL-18 gene-deficient (IL-18(-/-)) mice and wild-type (WT) mice were intranasally inoculated with Streptococcus pneumoniae, the most common causative agent of community-acquired pneumonia. Infection with S. pneumoniae increased the expression of IL-18 mRNA and was associated with elevated concentrations of both precursor and mature IL-18 protein within the lungs. IL-18(-/-) mice had significantly more bacteria in their lungs and were more susceptible for progressing to systemic infection at 24 and 48 h postinoculation. Similarly, treatment of WT mice with anti-IL-18 was associated with enhanced outgrowth of pneumococci. In contrast, the clearance of pneumococci from lungs of IL-12(-/-) mice was unaltered when compared with WT mice. Furthermore, anti-IL-12 did not influence bacterial clearance in either IL-18(-/-) or WT mice. These data suggest that endogenous IL-18, but not IL-12, plays an important role in the early antibacterial host response during pneumococcal pneumonia.  相似文献   

10.
In the present study, we comparatively assessed the pathophysiological mechanisms developed during lung infection of BALB/C female mice infected by an original wild type Klebsiella pneumoniae subsp. ozaenae strain (CH137) or by a referent subspecies K. pneumoniae. subsp. pneumoniae strain (ATCC10031). The mice infected with 2.10? CFU K. p. subsp. pneumoniae (n = 10) showed transient signs of infection and all of them recovered. All of those infected with 1.10? CFU K. p. subsp. ozaenae (n = 10) developed pneumonia within 24 h and died between 48 and 72 h. Few macrophages, numerous polymorphonuclear cells and lymphocytes were observed in their lungs in opposite to K. p. subsp. pneumoniae. In bronchoalveolar lavage, a significant increase in MIP-2, IL-6, KC and MCP-1 levels was only observed in K. p. subsp. ozaenae infected mice whereas high levels of TNF-α were evidenced with the two subspecies. Our findings indicated a lethal effect of a wild type K. p. subsp. ozaenae strain by acute pneumonia reflecting an insufficient alveolar macrophage response. This model might be of a major interest to comparatively explore the pathogenicity of K. p. subsp ozaenae strains and to further explore the physiopathological mechanisms of gram-negative bacteria induced human pneumonia.  相似文献   

11.
To determine the role of IL-1 in the host defense against pneumonia, IL-1R type I-deficient (IL-1R(-/-)) and wild-type (Wt) mice were intranasally inoculated with Streptococcus pneumoniae. Pneumonia resulted in elevated IL-1alpha and IL-1beta mRNA and protein levels in the lungs. Survival rates did not differ between IL-1R(-/-) and Wt mice after inoculation with 5 x 10(4) or 2 x 10(5) CFU. At early time points (24 and 48 h) IL-1R(-/-) mice had 2-log more S. pneumoniae CFU in lungs than Wt mice; at 72 h bacterial outgrowth in lungs was similar in both groups. Upon histopathologic examination IL-1R(-/-) mice displayed a reduced capacity to form inflammatory infiltrates at 24 h after the induction of pneumonia. IL-1R(-/-) mice also had significantly less granulocyte influx in bronchoalveolar lavage fluid at 24 h after inoculation. Since TNF is known to enhance host defense during pneumonia, we determined the role of endogenous TNF in the early impairment and subsequent recovery of defense mechanisms in IL-1R(-/-) mice. All IL-1R(-/-) mice treated with anti-TNF rapidly died (no survivors (of 14 mice) after 4 days), while 10-day survival in IL-1R(-/-) mice (control Ab), Wt mice (anti-TNF), and Wt mice (control Ab) was 7 of 13, 3 of 14, and 12 of 13, respectively. These data suggest that TNF is more important for host defense against pneumococcal pneumonia than IL-1, and that the impaired early host defense in IL-1R(-/-) mice is compensated for by TNF at a later phase.  相似文献   

12.
The details of the mechanism by which severe acute respiratory syndrome-associated coronavirus (SARS-CoV) causes severe pneumonia are unclear. We investigated the immune responses and pathologies of SARS-CoV-infected BALB/c mice that were immunized intradermally with recombinant vaccinia virus (VV) that expressed either the SARS-CoV spike (S) protein (LC16m8rVV-S) or simultaneously all the structural proteins, including the nucleocapsid (N), membrane (M), envelope (E), and S proteins (LC16m8rVV-NMES) 7-8 wk before intranasal SARS-CoV infection. The LC16m8rVV-NMES-immunized group exhibited as severe pneumonia as the control groups, although LC16m8rVV-NMES significantly decreased the pulmonary SARS-CoV titer to the same extent as LC16m8rVV-S. To identify the cause of the exacerbated pneumonia, BALB/c mice were immunized with recombinant VV that expressed the individual structural proteins of SARS-CoV (LC16mOrVV-N, -M, -E, -S) with or without LC16mOrVV-S (i.e., LC16mOrVV-N, LC16mOrVV-M, LC16mOrVV-E, or LC16mOrVV-S alone or LC16mOrVV-N + LC16mOrVV-S, LC16mOrVV-M + LC16mOrVV-S, or LC16mOrVV-E + LC16mOrVV-S), and infected with SARS-CoV more than 4 wk later. Both LC16mOrVV-N-immunized mice and LC16mOrVV-N + LC16mOrVV-S-immunized mice exhibited severe pneumonia. Furthermore, LC16mOrVV-N-immunized mice upon infection exhibited significant up-regulation of both Th1 (IFN-gamma, IL-2) and Th2 (IL-4, IL-5) cytokines and down-regulation of anti-inflammatory cytokines (IL-10, TGF-beta), resulting in robust infiltration of neutrophils, eosinophils, and lymphocytes into the lung, as well as thickening of the alveolar epithelium. These results suggest that an excessive host immune response against the nucleocapsid protein of SARS-CoV is involved in severe pneumonia caused by SARS-CoV infection. These findings increase our understanding of the pathogenesis of SARS.  相似文献   

13.
In vivo immunostimulating activity of the 163-171 peptide of human IL-1 beta   总被引:10,自引:0,他引:10  
The stimulating effect of a synthetic nonapeptide (fragment 163-171) of human interleukin 1 beta (IL-1 beta) on antibody responses to both T helper-dependent and T helper-independent antigens was investigated. It was shown that the nonapeptide enhanced the antibody response, as evaluated in the hemolytic plaque assay, of spleen cells from mice immunized with sheep red blood cells (SRBC). The activity of the 163-171 peptide on the primary response to SRBC was dose-dependent, being maximal when the peptide was inoculated at 100 mg/kg together with the antigen. Moreover, the 163-171 peptide was also effective in enhancing the secondary response to SRBC. The effect of the 163-171 peptide was to augment the frequency of cells specific for the antigen, inasmuch as no increase was ever observed in spleen cell numbers after treatment. In all these studies, human recombinant IL-1 beta gave effects qualitatively comparable to those of the 163-171 peptide, with a maximal activity at 20 ng/kg. Both the 163-171 peptide and human recombinant IL-1 beta were also able to enhance the in vivo immune response to a T helper-independent antigen such as SIII, a poorly immunogenic polysaccharidic antigen from Streptococcus pneumoniae type III. It can therefore be proposed that this synthetic nonapeptide of human IL-1 beta may represent a good candidate for use as adjuvant in vaccines.  相似文献   

14.
The human IL-1 receptor antagonist (IL-1ra) was produced in a high yield E. coli expression system, and was purified in a rapid two-step purification. This recombinant IL-1ra molecule possessed full binding activity to the IL-1 receptor (type I) and totally inhibited IL-1-induced PGE2 production by human dermal fibroblasts. Radioalkylation and analysis of V8-derived IL-1ra peptides indicate that the four cysteines present in the IL-1ra are not disulphide-linked.  相似文献   

15.
Mammals are colonized by an astronomical number of commensal microorganisms on their environmental exposed surfaces. These symbiotic species build up a complex community that aids their hosts in several physiological activities. We have shown that lack of intestinal microbiota is accompanied by a state of active IL-10-mediated inflammatory hyporesponsiveness. The present study investigated whether the germfree state and its hyporesponsive phenotype alter host resistance to an infectious bacterial insult. Experiments performed in germfree mice infected with Klebsiella pneumoniae showed that these animals are drastically susceptible to bacterial infection in an IL-10-dependent manner. In germfree mice, IL-10 restrains proinflammatory mediator production and neutrophil recruitment and favors pathogen growth and dissemination. Germfree mice were resistant to LPS treatment. However, priming of these animals with several TLR agonists recovered their inflammatory responsiveness to sterile injury. LPS pretreatment also rendered germfree mice resistant to pulmonary K. pneumoniae infection, abrogated IL-10 production, and restored TNF-α and CXCL1 production and neutrophil mobilization into lungs of infected germfree mice. This effective inflammatory response mounted by LPS-treated germfree mice resulted in bacterial clearance and enhanced survival upon infection. Therefore, host colonization by indigenous microbiota alters the way the host reacts to environmental infectious stimuli, probably through activation of TLR-dependent pathways. Symbiotic gut colonization enables proper inflammatory response to harmful insults to the host, and increases resilience of the entire mammal-microbiota consortium to environmental pressures.  相似文献   

16.
Streptococcus pneumoniae is a Gram-positive, extracellular bacterium that is responsible for significant mortality and morbidity worldwide. Pneumolysin (PLY), a cytolysin produced by all clinical isolates of the pneumococcus, is one of the most important virulence factors of this pathogen. We have previously reported that PLY is an essential factor for activation of caspase-1 and consequent secretion of IL-1β and IL-18 in macrophages infected with S. pneumoniae. However, the host molecular factors involved in caspase-1 activation are still unclear. To further elucidate the mechanism of caspase-1 activation in macrophages infected with S. pneumoniae, we examined the involvement of inflammasomes in inducing this cellular response. Our study revealed that apoptosis-associated specklike protein containing a caspase recruitment domain (ASC), an adaptor protein for inflammasome receptors such as nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) and absent in melanoma 2 (AIM2), is essentially required for the induction of caspase-1 activation by S. pneumoniae. Caspase-1 activation was partially impaired in NLRP3(-/-) macrophages, whereas knockdown and knockout of AIM2 resulted in a clear decrease in caspase-1 activation in response to S. pneumoniae. These results suggest that ASC inflammasomes, including AIM2 and NLRP3, are critical for caspase-1 activation induced by S. pneumoniae. Furthermore, ASC(-/-) mice were more susceptible than wild-type mice to S. pneumoniae, with impaired secretion of IL-1β and IL-18 into the bronchoalveolar lavage after intranasal infection, suggesting that ASC inflammasomes contribute to the protection of host from infection with PLY-producing S. pneumoniae.  相似文献   

17.
Saldeen J  Sandler S  Bendtzen K  Welsh N 《Cytokine》2000,12(4):405-408
IL-1beta is cytotoxic to pancreatic beta-cells in vitro but its role in the vicinity of beta-cells in vivo is unknown. We explored whether liposome-mediated transfer of the interleukin 1 receptor antagonist (IL-1ra) gene to islet cells might prevent recurrence of disease in syngeneically transplanted non-obese diabetic (NOD) mice. NOD mouse islet cells were transfected using liposome-mediated gene transfer with a human IL-1ra cDNA construct and transplanted two days later to prediabetic NOD mice. Graft infiltration and destruction were monitored three, five and eight days posttransplantation by histology and determination of insulin and cytokine content. IL-1ra gene transfer resulted in transient expression of IL-1ra protein in islet cells in vitro as assessed by ELISA and of IL-1ra mRNA in transplanted islets as revealed by RT-PCR. However, both control and IL-1ra transfected NOD grafts exhibited massive infiltration and loss of insulin-positive cells, paralleled by a decreased insulin content. Increased IL-1ra expression did not clearly affect other cytokine profiles (IL-1beta, IFN-gamma, IL-2), except for an increase of IL-10 on day eight. In conclusion, liposome-mediated IL-1ra gene transfer to mouse islet cells results in transient expression of IL-1ra which is, however, insufficient to confer resistance to destruction of grafted insulin-producing cells in the NOD mouse.  相似文献   

18.
Cell recruitment is a multistep process regulated by cytokines, chemokines, and growth factors. Previous work has indicated that the urokinase plasminogen activator receptor (uPAR) may also play a role in this mechanism, presumably by an interaction with the beta(2) integrin CD11b/CD18. Indeed, an essential role of uPAR in neutrophil recruitment during pulmonary infection has been demonstrated for beta(2) integrin-dependent respiratory pathogens. We investigated the role of uPAR and urokinase plasminogen activator (uPA) during pneumonia caused by a beta(2) integrin-independent respiratory pathogen, Streptococcus pneumoniae. uPAR-deficient (uPAR(-/-)), uPA-deficient (uPA(-/-)), and wild-type (Wt) mice were intranasally inoculated with 10(5) CFU S. pneumoniae. uPAR(-/-) mice showed reduced granulocyte accumulation in alveoli and lungs when compared with Wt mice, which was associated with more S. pneumoniae CFU in lungs, enhanced dissemination of the infection, and a reduced survival. In contrast, uPA(-/-) mice showed enhanced host defense, with more neutrophil influx and less pneumococci in the lungs compared with Wt mice. These data suggest that uPAR is necessary for adequate recruitment of neutrophils into the alveoli and lungs during pneumonia caused by S. pneumoniae, a pathogen eliciting a beta(2) integrin-independent inflammatory response. This function is even more pronounced when uPAR is unoccupied by uPA.  相似文献   

19.
The physiological functions of the acute phase protein serum amyloid P (SAP) component are not well defined, although they are likely to be important, as no natural state of SAP deficiency has been reported. We have investigated the role of SAP for innate immunity to the important human pathogen Streptococcus pneumoniae. Using flow cytometry assays, we show that SAP binds to S. pneumoniae, increases classical pathway-dependent deposition of complement on the bacteria, and improves the efficiency of phagocytosis. As a consequence, in mouse models of infection, mice genetically engineered to be SAP-deficient had an impaired early inflammatory response to S. pneumoniae pneumonia and were unable to control bacterial replication, leading to the rapid development of fatal infection. Complement deposition, phagocytosis, and control of S. pneumoniae pneumonia were all improved by complementation with human SAP. These results demonstrate a novel and physiologically significant role for SAP for complement-mediated immunity against an important bacterial pathogen, and provide further evidence for the importance of the classical complement pathway for innate immunity.  相似文献   

20.
Although influenza infection alone may lead to pneumonia, secondary bacterial infections are a much more common cause of pneumonia. Streptococcus pneumoniae is the most frequently isolated causative pathogen during postinfluenza pneumonia. Considering that S. pneumoniae utilizes the platelet-activating factor receptor (PAFR) to invade the respiratory epithelium and that the PAFR is upregulated during viral infection, we here used PAFR gene-deficient (PAFR-/-) mice to determine the role of this receptor during postinfluenza pneumococcal pneumonia. Viral clearance was similar in wild-type and PAFR-/- mice, and influenza virus was completely removed from the lungs at the time mice were inoculated with S. pneumoniae (day 14 after influenza infection). PAFR-/- mice displayed a significantly reduced bacterial outgrowth in their lungs, a diminished dissemination of the infection, and a prolonged survival. Pulmonary levels of IL-10 and KC were significantly lower in PAFR-/- mice, whereas IL-6 and TNF-alpha were only trendwise lower. These data indicate that the pneumococcus uses the PAFR leading to severe pneumonia in a host previously exposed to influenza A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号