首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In response to criticism of REH theory (Fitch 1980), Holmquist and Jukes (1981) have mostly avoided the criticism or misunderstood it. Since they themselves state in their response that Amino acid sequence data alone cannot be used to estimate total nucleotide substitutions, they agree with the criticism. Most of their paper treats the newer theory (here designated as the REHN theory) which attempts to use the nucleotide sequences encoding proteins to better estimate total nucleotide substitutions (Holmquist and Pearl 1980). Since I made no criticism of REHN theory, their comments are frequently beside the point of my original criticism of REH theory. Nevertheless, it is shown here that REHN theory is also unsatisfactory in that: One, the varions are now more clearly defined but in such a way as to preclude the same codon from suffering a nucleotide substitution in more than one evolutionary interval. Two, the set of codons that accepts silent substitutions is identical to the set that accepts amino acid changing nucleotide substitutions. Three, the uncertainty in the REH estimate is considerable in that alternative excellent fits to the same observatuonal data may give alternative REH values that differ significantly even before stochastic variation and selective bias are considered. Four, the fit of their model to data is an irrelevancy where there are zero degrees of freedom.  相似文献   

2.
Summary We have independently repeated the computer simulations on which Nei and Tateno (1978) base their criticism of REH theory and have extended the analysis to include mRNAs as well as proteins. The simulation data confirm the correctness of the REH method. The high average value of the fixation intensity 2 found by Nei and Tateno is due to two factors: 1) they reported only the five replications in which 2 was high, excluding the forty-five replications containing the more representative data;and 2) the lack of information, inherent to protein sequence data, about fixed mutations at the third nucleotide position within codons, as the values are lower when the estimate is made from the mRNAs that code for the proteins. REH values calculated from protein or nucleic acid data on the basis of the equiprobability of genetic events underestimate, not overestimate, the total fixed mutations. In REH theory the experimental data determine the estimate T2 of the time average number of codons that have been free to fix mutations during a given period of divergence. In the method of Nei and Tateno it is assumed, despite evidence to the contrary, that every amino acid position may fix a mutation. Under the latter assumption, the measure X2 of genetic divergence suggested by Nei and Tateno is not tenable: values of X2 for the hemoglobin divergences are less than the minimum number of fixed substitutions known to have occurred.Within the context of REH theory, a paradox, first posed by Zuckerkandl, with respect to the high rate of covarion turnover and the nature of general function sites in proteins is resolved.  相似文献   

3.
Sequence Evolution of Drosophila Mitochondrial DNA   总被引:15,自引:3,他引:15       下载免费PDF全文
We have compared nucleotide sequences of corresponding segments of the mitochondrial DNA (mtDNA) molecules of Drosophila yakuba and Drosophila melanogaster, which contain the genes for six proteins and seven tRNAs. The overall frequency of substitution between the nucleotide sequences of these protein genes is 7.2%. As was found for mtDNAs from closely related mammals, most substitutions (86%) in Drosophila mitochondrial protein genes do not result in an amino acid replacement. However, the frequencies of transitions and transversions are approximately equal in Drosophila mtDNAs, which is in contrast to the vast excess of transitions over transversions in mammalian mtDNAs. In Drosophila mtDNAs the frequency of C----T substitutions per codon in the third position is 2.5 times greater among codons of two-codon families than among codons of four-codon families; this is contrary to the hypothesis that third position silent substitutions are neutral in regard to selection. In the third position of codons of four-codon families transversions are 4.6 times more frequent than transitions and A----T substitutions account for 86% of all transversions. Ninety-four percent of all codons in the Drosophila mtDNA segments analyzed end in A or T. However, as this alone cannot account for the observed high frequency of A----T substitutions there must be either a disproportionately high rate of A----T mutation in Drosophila mtDNA or selection bias for the products of A----T mutation. --Consideration of the frequencies of interchange of AGA and AGT codons in the corresponding D. yakuba and D. melanogaster mitochondrial protein genes provides strong support for the view that AGA specifies serine in the Drosophila mitochondrial genetic code.  相似文献   

4.
The complete nucleotide sequences of three cloned cDNAs corresponding to human liver apolipoprotein E (apo-E) mRNA were determined. Analysis of the longest cDNA showed that it contained 1157 nucleotides of mRNA sequence with a 5'-terminal nontranslated region of 61 nucleotides, a signal peptide region corresponding to 18 amino acids, a mature protein region corresponding to 299 amino acids, and a 3'-terminal nontranslated region of 142 nucleotides. The inferred amino acid sequences from two cDNAs were identical and corresponded to the amino acid sequence for plasma apo-E3 that has been reported previously ( Rall , S. C., Jr., Weisgraber , K. H., and Mahley , R. W. (1982) J. Biol. Chem. 257, 4171-4178). The third cDNA differed from the other two cDNAs in five nucleotide positions. Three of these differences occurred in the third nucleotide position of amino acid codons, resulting in no change in the corresponding amino acids at residues Val-85, Ser-223, and Gln-248. The other two altered nucleotides occurred in the first nucleotide position of codons, leading to changes in the amino acids encoded. In the variant sequence, a threonine replaced the normal alanine at residue 99 and a proline replaced the normal alanine at residue 152. We have concluded that the human liver donor was heterozygous for the epsilon 3 genotype. The variant cDNA corresponds to a new, previously undescribed variant form of apo-E in which the amino acid substitutions of the protein are electrophoretically silent; it would probably be undetectable by standard apo-E phenotyping methods. The amino acid substitution at position 152 occurs in a region of apo-E that appears to be important for receptor binding, and it may have clinical significance.  相似文献   

5.
大黄鱼与小黄鱼细胞色素b基因全序列的比较分析   总被引:2,自引:1,他引:2  
陈艺燕  钱开诚  任岗  陈迪  章群 《生态科学》2005,24(2):143-145
对大黄鱼、小黄鱼线粒体细胞色素b基因进行了PCR扩增及序列测定,得到1140bp的全序列。大黄鱼和小黄鱼的碱基组成相似,前者T、C、A、G含量分别为28.4%、33.0%、23.2%和15.4%,A+T含量为51.6%;后者T、C、A、G含量分别为26.7%、34.1%、23.8%和15.4%,A+T含量为50.5%。大、小黄鱼cytb基因中三联体密码子中碱基的使用频率很相似,第一位较均一,第二位富含T,第三位富含C。大小黄鱼cytb基因存在明显差异,序列相似性仅为88.95%;两序列间具有126个差异位点;碱基转换/颠换率为3.1,碱基替换多发生在密码子第三位;碱基转换中C\T显著高于A\G,表现出转换偏歧。  相似文献   

6.
Comparison of complete genome sequences for different variants of hepatitis C virus (HCV) reveals several different constraints on sequence change. Synonymous changes are suppressed in coding regions at both 5′ and 3′ ends of the genome. No evidence was found for the existence of alternative reading frames or for a lower mutation frequency in these regions. Instead, suppression may be due to constraints imposed by RNA secondary structures identified within the core and NS5b genes. Nonsynonymous substitutions are less frequent than synonymous ones except in the hypervariable region of E2 and, to a lesser extent, in E1, NS2, and NS5b. Transitions are more frequent than transversions, particularly at the third position of codons where the bias is 16:1. In addition, nucleotide substitutions may not occur symmetrically since there is a bias toward G or C at the third position of codons, while T ↔ C transitions were twice as frequent as A ↔ G transitions. These different biases do not affect the phylogenetic analysis of HCV variants but need to be taken into account in interpreting sequence change in longitudinal studies. Received: 9 September 1996 / Accepted: 20 April 1997  相似文献   

7.
The nucleotide sequences of Serratia marcescens trpG and the corresponding regions of Escherichia coli, Shigella dysenteriae and Salmonella typhimurium trpD have been determined. Analysis of the nucleotide sequence divergence suggests the following evolutionary relationships: Serratia-[Salmonella, (Escherichia, Shigella)]. Partial reconstruction of ancestral nucleotide sequences and subsequent analysis of nucleotide substitutions show that the majority of nucleotide substitutions in the evolution of trp(G)D are transitions that result in a reduction of G + C content. Since most of the nucleotide substitutions are in the third position of codons, bias in synonymous codon usage also reflects G + C content. The trpE-trp(G)D junction in the four organisms is characterized by overlapping translation termination and initiation codons. The relative positions of trpE and trp(G)D thus became fixed in evolution before the fusion of trpG and trpD. Nucleotide sequences representing the fusion of trpG and trpD in Escherichia, Shigella and Salmonella are not more nor less divergent than other portions of the trp(G)D coding sequences.  相似文献   

8.
Nucleotide sequences of mRNAs were compared between major calcium-sensitive caseins of cow (αs1-casein) and rat (α-casein). A best fit alignment of the two sequences showed homology of 81% and 69% for the 5′- and 3′-untranslated regions, respectively. Homology in the comparable coding region of the mature asl-casein (76% of total codons) was remarkably lower at amino acid level (46%) than at nucleotide level (69%). The low conservation at amino acid level is explained by the unusual nucleotide substitution pattern (random at all three positions of codons) in contrast to synonymous substitutions at the third position revealed on comparison of other related proteins. The evolutionary distances among the number of the casein family were estimated by comparing known nucleotide sequences of the signal peptides which were the most conserved coding regions in the family. The divergence time for most distantly related caseins (both rat α-casein/rat β-casein and rat α-casein/mouse ε-casein) was estimated to be about 170 million years.  相似文献   

9.
This study compared orthologous gene pairs from Escherichia coli K12, E. coli O157:H7 EDL933, Salmonella typhimurium LT2, and Yersinia pestis CO92 using only homologs of equal length, and differing nucleotides were counted and mapped. The data showed very clearly how the rates of divergence change with intragenic and extragenic position. The rate of synonymous mutation is lowest near start codons and near stop codons, and, a little surprisingly, the opposite seemed to be true for nonsynonymous substitutions. Analysis outside genes reveals that nucleotide divergences occur less frequently upstream of start codons than downstream of stop codons, and a remarkable drop in divergences is seen for two of the data sets around N = 9 nucleotides upstream of start codons; that is, the Shine-Dalgarno region changes at a lower rate. The explanation is likely to be the link between expressivity and sequence complementarity to the 3' end of 16S ribosomal rRNA. The latter is highly conserved across many bacterial and archaebacterial species.  相似文献   

10.
Summary Nucleotide substitutions in the form of transitions (purine-purine or pyrimidine-pyrimidine interchanges) and transversions (purine-pyrimidine interchanges) occur during evolution and may be complied by aligning the sequences of homologous genes. Referring to the genetic code tables, silent transitions take place in third positions of codons in family boxes and two-codon sets. Silent transversions in third positions occur only in family boxes, except for AC transversions between AGR and CGR arginine codons (R=A or G). Comparisons of several protein genes have been made, and various subclasses of transitional and transversional nucleotide substitutions have been compiled. Considerable variations occur among the relative proportions of transitions and transversions. Such variations could possibly be caused by mutator genes, favoring either transitions or, conversely, transversions, during DNA replication. At earlier stages of evolutionary divergence, transitions are usually more frequent, but there are exceptions. No indication was found that transversions usually originate from multiple substitutions in transitions.  相似文献   

11.
Using all currently predicted coding regions in the honeybee genome, a novel form of synonymous codon bias is presented that affects the usage of particular codons dependent on the surrounding nucleotides in the coding region. Nucleotides at the third codon site are correlated, dependent on their weak (adenine [A] or thyamine [T]) versus strong (guanine [G] or cytosine [C]) status, to nucleotides on the first codon site which are dependent on their purine (A/G) versus pyrimidine (C/T) status. In particular, for adjacent third and first site nucleotides, weak–pyrimidine and strong–purine nucleotide combinations occur much more frequently than the underabundant weak–purine and strong–pyrimidine nucleotide combinations. Since a similar effect is also found in the noncoding regions, but is present for all adjacent nucleotides, this coding effect is most likely due to a genome-wide context-dependent mutation error correcting mechanism in combination with selective constraints on adjacent first and second nucleotide pairs within codons. The position-dependent relationship of synonymous codon usage is evidence for a novel form of codon position bias which utilizes the redundancy in the genetic code to minimize the effect of nucleotide mutations within coding regions. [Reviewing Editor: Dr. Brian Morton]  相似文献   

12.
The nucleotide sequence of a 869 bp segment of phage 434 DNA including the regulatory genes cro and cII is presented and compared with the corresponding part of the phage lambda DNA sequence. The 434 cro protein as deduced from the DNA sequence is a highly basic protein of 71 amino acid residues with a calculated molecular weight of 8089. While the cro gene sequences of phage 434 and lambda DNA are very different, the nuleotide sequences to the right of the lambda imm434 boundary show differences only at 11 out of 512 positions. Nucleotide substitutions in the cII gene occur with one exception in the third positions of the respective codons and only one out of several DNA regulatory signals located in this region of the phage genomes is affected by these nucleotide substitutions.  相似文献   

13.
An analysis of 5''-noncoding sequences from 699 vertebrate messenger RNAs.   总被引:496,自引:51,他引:445       下载免费PDF全文
M Kozak 《Nucleic acids research》1987,15(20):8125-8148
  相似文献   

14.
Variability of Evolutionary Rates of DNA   总被引:6,自引:1,他引:5       下载免费PDF全文
John H. Gillespie 《Genetics》1986,113(4):1077-1091
A statistical analysis of DNA sequences from four nuclear loci and five mitochondrial loci from different orders of mammals is described. A major aim of the study is to describe the variation in the rate of molecular evolution of proteins and DNA. A measure of rate variability is the statistic R, the ratio of the variance in the number of substitutions to the mean number. For proteins, R is found to be in the range 0.16 less than R less than 35.55, thus extending in both directions the values seen in previous studies. An analysis of codons shows that there is a highly significant excess of double substitutions in the first and second positions, but not in the second and third or first and third positions. The analysis of the dynamics of nucleotide evolution showed that the ergodic Markov chain models that are the basis of most published formulas for correcting for multiple substitutions are incompatible with the data. A bootstrap procedure was used to show that the evolution of the individual nucleotides, even the third positions, show the same variation in rates as seen in the proteins. It is argued that protein and silent DNA evolution are uncoupled, with the evolution at both levels showing patterns that are better explained by the action of natural selection than by neutrality. This conclusion is based primarily on a comparison of the nuclear and mitochondrial results.  相似文献   

15.
Abstract— Amino acid encoding genes contain character state information that may be useful for phylogenetic analysis on at least two levels. The nucleotide sequence and the translated amino acid sequences have both been employed separately as character states for cladistic studies of various taxa, including studies of the genealogy of genes in multigene families. In essence, amino acid sequences and nucleic acid sequences are two different ways of character coding the information in a gene. Silent positions in the nucleotide sequence (first or third positions in codons that can accrue change without changing the identity of the amino acid that the triplet codes for) may accrue change relatively rapidly and become saturated, losing the pattern of historical divergence. On the other hand, non-silent nucleotide alterations and their accompanying amino acid changes may evolve too slowly to reveal relationships among closely related taxa. In general, the dynamics of sequence change in silent and non-silent positions in protein coding genes result in homoplasy and lack of resolution, respectively. We suggest that the combination of nucleic acid and the translated amino acid coded character states into the same data matrix for phylogenetic analysis addresses some of the problems caused by the rapid change of silent nucleotide positions and overall slow rate of change of non-silent nucleotide positions and slowly changing amino acid positions. One major theoretical problem with this approach is the apparent non-independence of the two sources of characters. However, there are at least three possible outcomes when comparing protein coding nucleic acid sequences with their translated amino acids in a phylogenetic context on a codon by codon basis. First, the two character sets for a codon may be entirely congruent with respect to the information they convey about the relationships of a certain set of taxa. Second, one character set may display no information concerning a phylogenetic hypothesis while the other character set may impart information to a hypothesis. These two possibilities are cases of non-independence, however, we argue that congruence in such cases can be thought of as increasing the weight of the particular phylogenetic hypothesis that is supported by those characters. In the third case, the two sources of character information for a particular codon may be entirely incongruent with respect to phylogenetic hypotheses concerning the taxa examined. In this last case the two character sets are independent in that information from neither can predict the character states of the other. Examples of these possibilities are discussed and the general applicability of combining these two sources of information for protein coding genes is presented using sequences from the homeobox region of 46 homeobox genes fromDrosophila melanogasterto develop a hypothesis of genealogical relationship of these genes in this large multigene family.  相似文献   

16.
The constraints on nucleotide sequences of highly and weakly expressed genes from Escherichia coli have been analysed and compared. Differences in synonymous codon spectra in highly and weakly expressed genes lead to different frequencies of nucleotides (in the first and third codon positions) and dinucleotides in the two groups of genes. It has been found that the choice of synonymous codons in highly expressed genes depends on the nucleotides adjacent to the codon. For example, lysine is preferably encoded by the AAA codon if guanosine is 3' to the lysine codon (AAA-G, P less than 10(-9)). And, on the contrary, AAG is used more often than AAA (P less than 0.001) if cytidine is 3' adjacent to lysine. Guanosine occurs more frequently than adenosine 5' to all the lysine codons (AAR, P less than 10(-5), i.e. NNG codons are preferred over the synonymous NNA codons 5' to the positions of lysine in the genes. The context effect was observed in nonsense and missense suppression experiments. Therefore, a hypothesis has been suggested that the efficiency of translation of some codons (for which the constraints on the adjacent nucleotides were found) can be modulated by the codon context. The rules for preferable synonymous codon choice in highly expressed genes depending on the nucleotides surrounding the codon are presented. These rules can be used in the chemical synthesis of genes designed for expression in E. coli.  相似文献   

17.
Twelve of 30 species examined in the ant genus Polyrhachis carry single nucleotide insertions at one or two positions within the mitochondrial cytochrome b (cytb) gene. Two of the sites are present in more than one species. Nucleotide substitutions in taxa carrying insertions show the strong codon position bias expected of functional protein coding genes, with substitutions concentrated in the third positions of the original reading frame. This pattern of evolution of the sequences strongly suggests that they are functional cytb sequences. This result is not the first report of +1 frameshift insertions in animal mitochondrial genes. A similar site was discovered in vertebrates, where single nucleotide frameshift insertions in many birds and a turtle were reported by Mindell et al. (Mol Biol Evol 15:1568, 1998). They hypothesized that the genes are correctly decoded by a programmed frameshift during translation. The discovery of four additional sites gives us the opportunity to look for common features that may explain how programmed frameshifts can arise. The common feature appears to be the presence of two consecutive rare codons at the insertion site. We hypothesize that the second of these codons is not efficiently translated, causing a pause in the translation process. During the stall the weak wobble pairing of the tRNA bound in the peptidyl site of the ribosome, together with an exact Watson–Crick codon–anticodon pairing in the +1 position, allows translation to continue in the +1 reading frame. The result of these events is an adequate level of translation of a full-length and fully functional protein. A model is presented for decoding of these mitochondrial genes, consistent with known features of programmed translational frameshifting in the yeast TY1 and TY3 retrotransposons.Reviewing Editor: Dr. W. Ford Doolittle  相似文献   

18.
The alpha-Amylase locus in Drosophila pseudoobscura is a multigene family of one, two or three copies on the third chromosome. The nucleotide sequences of the three Amylase genes from a single chromosome of D. pseudoobscura are presented. The three Amylase genes differ at about 0.5% of their nucleotides. Each gene has a putative intron of 71 (Amy1) or 81 (Amy2 and Amy3) bp. In contrast, Drosophila melanogaster Amylase genes do not have an intron. The functional Amy1 gene of D. pseudoobscura differs from the Amy-p1 gene of D. melanogaster at an estimated 13.3% of the 1482 nucleotides in the coding region. The estimated rate of synonymous substitutions is 0.398 +/- 0.043, and the estimated rate of nonsynonymous substitutions is 0.068 +/- 0.008. From the sequence data we infer that Amy2 and Amy3 are more closely related to each other than either is to Amy1. From the pattern of nucleotide substitutions we reason that there is selection against synonymous substitutions within the Amy1 sequence; that there is selection against nonsynonymous substitutions within the Amy2 sequence, or that Amy2 has recently undergone a gene conversion with Amy1; and that Amy3 is nonfunctional and subject to random genetic drift.  相似文献   

19.
We conducted a genome-wide analysis of variations in guanine plus cytosine (G+C) content at the third codon position at silent substitution sites of orthologous human and mouse protein-coding nucleotide sequences. Alignments of 3776 human protein-coding DNA sequences with mouse orthologs having >50 synonymous codons were analyzed, and nucleotide substitutions were counted by comparing sequences in the alignments extracted from gap-free regions. The G+C content at silent sites in these pairs of genes showed a strong negative correlation (r = -0.93). Some gene pairs showed significant differences in G+C content at the third codon position at silent substitution sites. For example, human thymine-DNA glycosylase was A+T-rich at the silent substitution sites, while the orthologous mouse sequence was G+C-rich at the corresponding sites. In contrast, human matrix metalloproteinase 23B was G+C-rich at silent substitution sites, while the mouse ortholog was A+T-rich. We discuss possible implications of this significant negative correlation of G+C content at silent sites.  相似文献   

20.
The nucleotide sequence of the amiE gene of Pseudomonas aeruginosa   总被引:4,自引:0,他引:4  
The nucleotide sequence of the amiE gene, encoding the aliphatic amidase of Pseudomonas aeruginosa, has been determined. The sequence of 1038 nucleotides shows a strong bias in favour of codons with G or C in the third position, and only 44 different codons are utilised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号