首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Follicular size, follicular atresia, and oocyte morphology were investigated for the possible relation of these characteristics to the developmental competence of bovine oocytes. Ovaries from a local slaughterhouse were dissected to obtain a heterogeneous population of follicles. Half of each follicle was fixed for histological analysis, and the oocytes were detached carefully and cultured individually. Before in vitro maturation, the oocytes were grouped into six different classes based on the morphology of the cumulus and the ooplasm: classes 1 and 2 represent oocytes with a homogeneous ooplasm plus a compact and complete cumulus, and classes 3–6 represent oocytes with a granulated ooplasm and an incomplete and/or expanded cumulus. Oocytes from class 3 (beginning of expansion in outer cumulus layers and slight granulations in the ooplasm) developed past the 16-cell stage significantly (P<0.05) more than oocytes with a compact and complete cumulus (classes 1 and 2) and oocytes from classes 4–6 (incomplete and/or expanded cumulus) after 5 days of in vitro culture. Oocytes from follicles measuring 3 mm or less did not develop past the 16-cell stage, whereas follicles of 3–5 mm and 5 mm or larger developed at similar rates (17% and 21% morulae, respectively). The state of the follicle did not affect whether an embryo reached at least the 16-cell stage, as comparable rates were obtained in all three groups of follicles: nonatretic (20%), intermediate (14%), and slightly atretic (16%). We concluded that oocytes acquire developmental competence late in the follicular phase, possibly when the first signs of atresia have appeared, and that oocytes with beginning signs of degeneration (class 3) will develop significantly more than all other classes. Class 3 oocytes originated from follicles that were generally atretic and therefore in later phases of follicular growth, suggesting that these oocytes, having been subjected longer to the follicular microenvironment, are more differentiated (possibly at the cytoplasmic level) than other classes of oocytes. © 1995 Wiley-Liss, Inc.  相似文献   

2.
Various factors, such as quality of the oocyte, oxygen tension, embryo density, and kind of energy substrate during in vitro production of embryos may affect the rate of preimplantation embryo development. In the present study we used 12553 bovine oocytes aspirated from slaughterhouse ovaries to evaluate various culture conditions that would increase in vitro production of advanced stages of preimplantation embryos. The morphological quality of the oocyte based on the compactness and number of layers of cumulus cells had significant positive effects on the rates of in vitro maturation, fertilization and development to the morula and blastocyst stages. None of the corona-enclosed or nude oocytes progressed beyond the 8- to 16-cell stage. The level of oxygen (5 or 20%) did not affect the proportion of one-cell embryos undergoing cleavage or progressing to morula and blastocyst stages. The rate of development of one-cell embryos originating from inferior quality oocytes was significantly improved when cultured in groups of 40 instead of 20 embryos per 0.5 mL medium. In the presence of cumulus cells, glucose had beneficial effects on in vitro maturation and subsequent development of IVM-IVF zygotes. The presence of serum improved the rate of in vitro development of one-cell embryos. Minimum Essential Medium supplemented with energy substrates according to the findings of metabolic studies was less effective in supporting in vitro maturation and subsequent development than TCM-199. In conclusion, morphological grading of immature oocytes is an appropriate selection criterion for their developmental ability. Embryo yields from low quality oocytes can be increased by culturing them in large groups. Serum is not essential for in vitro generation of embryos but its addition improves rates of success.  相似文献   

3.
Lim JM  Liou SS  Hansel W 《Theriogenology》1996,46(3):429-439
In vitro-matured/in vitro-fertilized bovine oocytes were cultured on cumulus cell layers in a serum-free medium (bovine embryo culture medium; BECM) supplemented with 3 mg/ml fatty acid-free BSA. The intracytoplasmic glutathione concentration of embryos was found to change significantly (P < 0.008) during the preimplantation stages, beginning to increase at the 9- to 16-cell stage (20.7 pM/embryo) and reaching the highest (P < 0.03) level at the hatched-blastocyst stage (36.7 pM/embryo). A significantly (P < 0.06) lower concentration of glutathione was obtained at the 2- to 8-cell stage (7.1 pM/embryo) than at any other stage. When inseminated oocytes were cultured in BECM supplemented with different concentrations of beta-mercaptoethanol (2-ME) to promote glutathione synthesis, higher (P < 0.05) percentages of embryos developed to the 9- to 16-cell, morula and blastocyst stages at 96, 144 and 192 h post insemination, following the addition of 6.25 and 12.5 microM than after no supplementation with 2-ME. However, when 16-cell embryos were cultured in BECM supplemented with 6.25 and 12.5 microM of 2-ME, blastocyst formation was not significantly (P > 0.9) increased. When the combined effects of 2-ME and/or cumulus cells were compared in a 2 x 2 factorial design, there was a significant (P < 0.03) effect of 2-ME on the development of oocytes to blastocysts. The presence of cumulus cells significantly (P < 0.001) affected development after the fourth cleavage (morula compaction and blastocyst formation), but there was no significant (P > 0.11) interaction between 2-ME and cumulus cells. In conclusion, intracytoplasmic glutathione concentration of bovine embryos derived from in vitro-culture increases during preimplantation development. The glutathione synthesis promoter 2-ME exerts its embryotropic role on the development before the fourth cleavage, thus yielding an improvement in blastocyst formation.  相似文献   

4.
Interspecies nuclear transfer (INT) has been used as an invaluable tool for studying nucleus-cytoplasm interactions; and it may also be a method for rescuing endangered species whose oocytes are difficult to obtain. In the present study, we investigated interaction of the chicken genome with the rabbit oocyte cytoplasm. When chicken blastodermal cells were transferred into the perivitelline space of rabbit oocytes, 79.3% of the couplets were fused and 9.7% of the fused embryos developed to the blastocyst stage. Both M199 and SOF medium were used for culturing chicken-rabbit cloned embryos; embryo development was arrested at the 8-cell stage obtained in SOF medium, while the rates of morulae and blastocysts were 12.1 and 9.7%, respectively, in M199 medium. Polymerase chain reaction (PCR) amplification of nuclear DNA and karyotype analyses confirmed that genetic material of morulae and blastocysts was derived from the chicken donor cells. Analysis mitochondrial constitution of the chicken-rabbit cloned embryos found that mitochondria, from both donor cells and enucleated oocytes, co-existed. Our results suggest that: (1) chicken genome can coordinate with rabbit oocyte cytoplasm in early embryo development; (2) there may be an 8- to 16-cell stage block for the chicken-rabbit cloned embryos when cultured in vitro; (3) mitochondrial DNA from the chicken donor cells was not eliminated until the blastocyst stage in the chicken-rabbit cloned embryos; (4) factors existing in ooplasm for somatic nucleus reprogramming may be highly conservative.  相似文献   

5.
6.
A morphological classification of the immature cumulus-oocyte complex (COC), which grossly resembled the atresia grade of its follicle source, was used in bovine oocytes to determine 1) the developmental potential by either in vitro fertilization or parthenogenetic activation, 2) the calcium current activity by whole-cell voltage clamp technique, and 3) the intracytoplasmic calcium stores by microfluorimetric evaluation. The COC classification took into account some cumulus and ooplasm features, designated as follows: A) presence of a clear and compact cumulus and translucent ooplasm, B) dark and compact cumulus and dark ooplasm, and C) dark and expanded cumulus and dark ooplasm. We found no difference between in vitro fertilization and parthenogenetically activated oocytes in terms of cleavage rate and blastocyst production. Both protocols indicated a significant variability between the three compared COC categories. The B-COCs showed the highest embryo production efficiency as well as the greatest Ca(2+) current activity, whereas A-COCs showed an opposite pattern. The C-COCs, mostly attributed to atretic and heavily atretic follicles, showed morphological characteristics between those of A- and B-COCs. Stores of Ca(2+) were significantly greater in A-COCs than in B- and C-COCs in the case of immature oocytes, and greater in B-COCs than in C-and A-COCs in the case of in vitro-matured oocytes. These results demonstrate that in the bovine 1) the considered morphological criteria for oocyte classification are related to developmental competence, 2) plasma membrane Ca(2+) current in the immature oocyte is related to developmental potential, and 3) calcium stores are related to morphological quality in immature oocytes and to developmental competence in mature oocytes.  相似文献   

7.
Uhm SJ  Chung HM  Kim C  Shim H  Kim NH  Lee HT  Chung KS 《Theriogenology》2000,54(4):559-570
In the pig little information is available on cytoplasmic events during the reprogramming of oocytes reconstructed with somatic nuclei. The present study was conducted to determine the developmental potential of porcine cumulus cells (CC) and fetal fibroblasts (FF) after they were transferred into enucleated oocytes. Non-quiescent FF were fused to the enucleated oocytes using electrical pulse, whereas CC were directly injected into the oocytes. Transferred nuclei from both CC and FF underwent premature chromosome condensation (PCC), nuclear swelling and pronucleus formation. The remodeled oocytes developed to the mitotic and 2-cell stage at 18 to 24 h after nuclear transfer. The pattern of nuclear remodeling was similar regardless of the sources of karyoplasts or nuclear transfer methods. However, using FF, 24% of nuclear transferred embryos developed to the morula or blastocyst stage, whereas only 8% of those using CC developed to the morula or blastocyst stage. These results suggest that porcine oocyte cytoplasm can successfully reprogram somatic cell nuclei and support the development of nuclear transferred embryos to the blastocyst stage.  相似文献   

8.
Feng WG  Sui HS  Han ZB  Chang ZL  Zhou P  Liu DJ  Bao S  Tan JH 《Theriogenology》2007,67(8):1339-1350
The effect of granulosa cell (GC) apoptosis and follicle size on the competence of bovine oocytes were studied using a well-in-drop (WID) oocyte/embryo culture system, which allows identification of follicular origin. Hatching rates of blastocysts did not differ (P>0.05) between oocytes cultured in the WID system (13%) and those cultured in the conventional group system (16%). Hatching rates of blastocysts were higher (P<0.05) in early atretic (17%) than in non-atretic (8%) and late atretic follicles (10%) of the same size (4-8mm), and in 6-8mm (22%) than in 4-5mm follicles (15%) at the early atretic stage. More oocytes (P<0.05) from late atretic (17%) than from non-atreteic (7%) or early atretic follicles (9%) of the same size (4-8mm) were arrested at Grade 1 cumulus expansion (only cells in the peripheral two layers began to expand). Similarly, more oocytes from 2 to 3mm follicles (30%) than from 6 to 8mm follicles (21%) at the same (late) atretic stage had Grade 1 cumulus expansion (P<0.05). Hatching blastocyst percentages of oocytes with Grade 3 (all layers of the cumulus except corona radiate cells expanded) or Grade 4 (full) cumulus expansion were higher in early atretic (20%) than in non-atretic (13%) or late atretic follicles (12%). Hatching blastocyst percentages of oocytes from follicles at the early atretic stage increased as cumulus expanded from Grade 2 (9%) to Grade 4 (27%). Regardless of the degree of follicle atresia, 72-76% of the floating cells in the follicular fluid (FF) were undergoing apoptosis. The floating cell density in FF was highly (r=0.6-0.7) correlated with oocyte developmental potency. In conclusion, the WID culture system was as efficient as group culture and allowed identification of follicular origin. Furthermore, the developmental potential of oocytes was affected by GC apoptosis, follicle size and cumulus expansion, and the floating cell density in FF could be used as a simple and non-invasive marker of oocyte quality.  相似文献   

9.
Frozen-thawed spermatozoa collected from a beef bull (Japanese Black) were used for in vitro fertilization (IVF) of matured oocytes obtained from dairy (Holstein) and beef (Japanese Black) females. Embryos were examined for fertilization, cleavage rate, interval between insemination and blastocyst production (experiment I), total cell number per embryo and sex ratio during blastocyst formation (experiment II), and blastocyst production rate of zygotes that developed to 2-, 4-, and 8-cell stages at 48h post-fertilization (experiment III). Fertilized oocytes were cultured in vitro on a cumulus cell co-culture system. The fertilization and cleavage rate of oocytes groups were similar, however, the blastocyst production rate was greater (P<0.05) in hybrid than from purebred embryos (27% versus 20%). Development of blastocysts produced from hybrid embryos developed at a faster rate than blastocysts produced from the straightbred embryos. In hybrid embryos, blastocyst production was significantly greater on day 7 (56%) and gradually decreased from 20% on day 8 to 17% on day 9. In contrast, blastocyst production rate from the purebred embryos was lower on day 7 (17%), increasing on day 8 to 59% and then decreased on day 9 to 24%. The total number of cells per embryo and sex ratio of in vitro-produced blastocysts were not different between hybrid and purebred embryos. The number of blastocysts obtained from embryos at the 8-cell stage of development by 48h post-fertilization (94%) was greater (P<0.01) than the number of zygotes producing blastocysts that had developed to the 4-cell stage (4%) and the 2-cell stage (2%) during the same interval. These results show that the blastocyst production rate and developmental rate to the blastocyst stage were different between hybrid and purebred embryos, and that almost all of the in vitro-produced blastocysts were obtained from zygotes that had developed to the 8-cell stage 48h post-fertilization.  相似文献   

10.
This study examined the chromatin morphology, in vitro development, and expression of selected genes in cloned embryos produced by transfer of mouse embryonic fibroblasts (MEF) into the bovine ooplasm. After 6 hr of activation, inter-species nuclear transfer (NT) embryos (MEF-NT) had one (70%) or two pronuclei (20%), respectively. After 72 hr of culture in vitro, 62.6% of the MEF-NTs were arrested at the 8-cell stage, 31.2% reached the 2- to 4-cell stage, and only 6.2% had more than eight blastomeres, but none of these developed to the blastocyst stage. Whereas, 20% of NT embryos derived from bovine embryonic fibroblast fused with bovine ooplasm (BEF-NT) reached the blastocyst stage. Donor MEF nuclei expressing an Enhanced Green Fluorescent Protein (EGFP) transgene resulted in 1- to 8-cell stage MEF-NT that expressed EGFP. The expression of selected genes was examined in 8-cell MEF-NTs, 8-cell mouse embryos, enucleated bovine oocytes, and MEFs using RT-PCR. The mRNA for heat shock protein 70.1 (Hsp 70.1) gene was detected in MEF-NTs and MEF, but not in mouse embryos. The hydroxy-phosphoribosyl transferase (HPRT) mRNA was found in normal mouse embryos and MEF but not in MEF-NTs. Expression of Oct-4 and embryonic alkaline phospatase (eAP) genes was only detected in normal mouse embryos and not in the inter-species NT embryos. Abnormal gene expression profiles were associated with an arrest in the development at the 8-cell stage, but MEF-NT embryos appeared to have progressed through gross chromatin remodeling, typical of intra-species NT embryos. Therefore, molecular reprogramming rather than chromatin remodeling may be a better indicator of nuclear reprogramming in inter-species NT embryos.  相似文献   

11.
To identify potential markers of maturation quality, differences in developmental capacity between cow and calf oocytes were compared in parallel with their constitutive and neosynthetic protein profiles before and after in vitro maturation (IVM). A comparison was also made between the protein profiles of follicular fluid (FF) from calf and cow ovaries. The effect of epidermal growth factor (EGF) during IVM on the subsequent development of prepubertal calf oocytes was examined. The effect of the presence of fetal calf serum (FCS) during development of embryos originating from calf oocytes was also examined. No differences were noted between the constitutive proteins of cow and calf oocytes and only a minor modification was observed before IVM in the pattern of neosynthesized proteins (presence of a band of 37 kD and a slight increase in the intensity of band of 78 kD in cow as compared to calf oocytes). However, the comparison of constitutive protein profiles from calf and cow FF demonstrated quantitative (the bands of 34 and 45 kD were more intense for cow than for calf) differences. EGF receptors (EGF-R) were demonstrated on cumulus—oocytes complexes (COCs) by immunofluorescence. There was no difference in intensity between cow and calf COCs. Furthermore, the addition of EGF during IVM of calf oocytes dramatically stimulated cumulus expansion and significantly increased the cleavage rate at 72 h post-insemination (82% vs 67%), as well as the proportion of embryos at the 5- to 8-cell stage at this time (54% vs 43%). Also, blastocyst yields at day 6 (11% vs 5%) and at day 8 (17% vs 10%) were significantly higher in the presence of EGF P < 0.05). The addition of FCS to synthetic oviduct fluid droplets at day 2 of culture (48 hpi) had no effect on cleavage, blastocyst yield, or blastocyst cell number. In conclusion, differences in developmental ability between calf and cow oocytes would appear to be not solely linked to differences in oocyte protein patterns. It is likely that the FF, which constitutes the microenvironment in which the oocyte develops, plays a major modulating role in determining the fate of the oocyte/follicle. © 1996 Wiley-Liss, Inc.  相似文献   

12.
The aim of the study was to determine the contribution of cumulus cells on the developmental competence of porcine oocytes during follicle growth. Oocytes from large (5-8mm) and small (2-3mm) follicles were cultured with or without follicle stimulating hormone (FSH), subsequently examined for nuclear stage and spindle morphology, or fertilized and cultured for embryo development, or analyzed for glutathione content. Additionally, the significance of cumulus investment, corona radiata cells, cumulus cell number and origin of cumulus cells for oocyte maturation were investigated. Small follicle oocytes cultured without FSH exhibited the highest incidence of spindle aberrations. Oocytes cultured without FSH exhibited reduced sperm penetration and blastocyst rates, and a higher proportion monospermic oocytes developed to the blastocyst stage when derived from large follicles. The glutathione content in oocytes increased during follicle growth and oocyte maturation, but no direct correlation between oocyte glutathione content and oocyte developmental capacity was observed. Oocytes with a bigger cumulus investment exhibited better embryo development. Oocytes with a single corona radiata cell layer (CROs) exhibited similar progression through meiosis to oocytes with more cumulus cell layers, but showed reduced embryo development. More blastocysts were observed when CROs were cultured with disconnected cumulus cells during IVM, but no blastocyst increase was observed when CROs were cocultured with a higher number of cumulus cells or with cumulus cells from large follicles. We conclude that increased developmental capacity of oocytes during follicle growth is intrinsic and whether cumulus cells originate from large or small follicles, their contribution to oocyte maturation remains unchanged. Further, cumulus investment can be used as a variable to predict oocyte developmental capacity.  相似文献   

13.
Two experiments were conducted to investigate the effect of carbon dioxide (CO2) gas atmosphere and beta-mercaptoethanol on the development of bovine embryos in an in vitro co-culture system. In Experiment 1, in vitro-matured bovine oocytes were inseminated and then co-cultured with cumulus cells in culture medium (CM; 25 mM HEPES buffered TCM-199 supplemented with 5% superovulated cow serum and 0.5 mM sodium pyruvate). Oocytes matured and fertilized in 2 or 5% CO2 in air exhibited similar cleavage rates, but the proportion of embryos that developed to the blastocyst stage was higher for embryos co-cultured in 2 versus 5% CO2 in air. In Experiment two, 4- to 8-cell embryos produced under the condition of 2% CO2 in air were co-cultured with cumulus cells in CM supplemented with various levels of beta-mercaptoethanol (0, 5, 10, 50 microM). The percentage of embryos that developed to the blastocyst stage in CM with 10 microM beta-mercaptoethanol was higher (P<0.05) than that of embryos co-cultured with 0 or 50 microM beta-mercaptoethanol. These results indicate that cumulus cell co-culture in an atmosphere of 2% CO2 in air has a marked stimulatory effect on in vitro development of bovine embryos and that addition of beta-mercaptoethanol to the co-culture medium 2 d after insemination improved the in vitro development of bovine 4- to 8-cell embryos to the blastocyst stage.  相似文献   

14.
Somatic cell nuclear transfer (SCNT) is not successful so far in non-human primates. The objective of this study was to investigate the effects of stimulation cycles (first and repeat) on oocyte retrieval and in vitro maturation (IVM) and to evaluate the effects of stimulation cycles and donor cell type (cumulus and fetal skin fibroblasts) on efficiency of SCNT with transported IVM oocytes. In this study, 369 immature oocytes were collected laparoscopically at 24 h following human chorionic gonadotrophin (hCG) treatment from 12 cynomolgus macaque (Macaca fascicularis) in 24 stimulation cycles, and shipped in pre-equilibrated IVM medium for a 5 h journey, placed in a dry portable incubator (37 degrees C) without CO(2) supplement. A total of 70.6% (247/350) of immature oocytes reached metaphase II (MII) stage at 36 h after hCG administration, MII spindle could be seen clearly in 80.6% (104/129) of matured IVM oocytes under polarized microscopy. A total of 50.0% (37/74) of reconstructive SCNT embryos cleaved after activation; after cleavage, 37.8% (14/37) developed to the 8-cell stage and 8.1% (3/37) developed to morula, but unfortunately none developed to the blastocyst stage. Many more oocytes could be retrieved per cycle from monkeys in the first cycle than in repeated cycles (19.1 vs. 11.7, p < 0.05). There were no significant differences in the maturation rate (70.0 vs. 71.4%, p > 0.05) and MII spindle rate under polarized microscopy (76.4 vs. 86.0%, p > 0.05) between the first and repeat cycles. There were also no significant differences in the cleavage rate, and the 4-cell, 8-cell and morula development rate of SCNT embryos between the first and repeat cycles. When fibroblast cells and cumulus cells were used as the donor cells for SCNT, first cleavage rate was not significantly different, but 4-cell (50.0 vs. 88.9%, p < 0.05) and 8-cell (0 vs. 51.9%, p < 0.01) development rate were significantly lower for the former. In conclusion, the number of stimulation cycles has a significant effect on oocyte retrieval, but has no effect on maturation and SCNT embryo development; however, different donor cell types (cumulus and fibroblast) resulted in different developmental potentials of SCNT embryos.  相似文献   

15.
Glutamine (GLN) is a metabolic precursor for hexosamine synthesis and its inclusion in culture medium has been reported to improve cumulus expansion. Glutamine and cysteine share the same transport system. Excess external GLN may act as a competitive inhibitor for the uptake of cysteine and stimulate loss of cellular cysteine, interfering this with GSH synthesis. Experiments were designed to evaluate the effect of 1–3 mM GLN during in vitro maturation (IVM) on bovine-cumulus expansion, intracellular GSH levels in both oocytes and cumulus cells, and subsequent embryo development up to blastocyst stage. Also, GSH content was measured in 6- to 8-cell embryos and a possible relationship between cumulus expansion and GSH synthesis was studied. Intact cumulus cell-oocyte complexes were incubated for 24 hr and cumulus expansion was measured by a computerized image-digitizing system either before or after IVM. IVM/IVF bovine oocytes were cultured up to 6- to 8-cell stage embryos for assessment of GSH content or for 8 days up to blastocyst stage for embryo development. The measurement of total GSH content was performed by an enzymatic method in oocytes, cumulus cells and 6- to 8-cell embryos. The maximal expansion was achieved by addition of 2 mM GLN without affecting GSH levels, in both oocytes and cumulus cells. At 3 mM, the degree of cumulus expansion was lower and the GSH levels decreased. The addition of 2 mM GLN improves cleavage and blastocyst rates, whereas no differences were found between 0, 1, and 3 mM GLN. Moreover, the GSH content in 6- to 8-cell embryos was similar at any GLN concentrations. In order to study the relationship between GSH and cumulus expansion: 6-diazo-5-oxo-1-norleucine (DON), an inhibitor of hexosamine synthesis, or buthionine sulfoximide (BSO), an inhibitor of GSH synthesis, either alone or with GLN was added to IVM medium. GSH level was not affected by the presence of DON. However, the degree of cumulus expansion was reduced in the presence of BSO. In conclusion, bovine oocytes matured in the presence of 2 mM GLN improve their capacity for subsequent embryo development. Nevertheless, GSH level was altered when GLN was added to IVM medium at a high concentration with a reduction in the degree of cumulus expansion. This study provides evidence that optimal cumulus expansion in vitro is partially dependent on hexosamine production and intracellular GSH content. Mol. Reprod. Dev. 51:76–83, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
The present study investigated the in vitro developmental potential of reconstituted mouse embryos produced from the cytoplast of pronuclear-stage embryos or oocytes and single blastomeres of 2-cell stage embryos by electrofusion. The cytoplast of pronuclear-stage embryos and oocytes were obtained by manual bisection with a fine glass needle under a dissecting microscope. The fusion rates of the reconstituted embryos produced from the cytoplast of oocytes and single blastomeres of 2-cell stage embryos (O-SB2: 38.1 and 41.5%) were significantly lower than those produced from the cytoplast of pronuclear-stage embryos and single blastomeres of 2-cell stage embryos (P-SB2: 91.2 and 97.6%; P<0.001). Reconstituted embryos were encapsulated in alginate gel and were cultured for 96 hours. Similarly, the cleavage and development rates to the blastocyst stage of O-SB2 (56.3, 61.2 and 2.0, 3.1%, respectively) were significantly lower than those of the P-SB2 (91.0, 91.2 and 18.6, 20.7%; respectively, P<0.05). The cleavage and development rates to the blastocyst stage (61.2 and 2.0%) of reconstituted embryos produced from single blastomeres of late 2-cell stage embryos and oocyte cytoplast improved after activation by ethanol treatment (76.1 and 21.7%). However, the use of single blastomeres of early 2-cell stage embryos as nuclear donors did not enhance the cleavage and development rates of the reconstituted embryos to the blastocyst stage.  相似文献   

17.
Nuclear transplantation in early pig embryos   总被引:38,自引:0,他引:38  
Nuclear transfer was evaluated in early porcine embryos. Pronuclear stage embryos were centrifuged, treated with cytoskeletal inhibitors, and subsequently enucleated. Pronuclei containing karyoplasts were placed in the perivitelline space of the enucleated zygote and fused to the enucleated zygote with electrofusion. The resulting pronuclear exchange embryos were either monitored for cleavage in vitro (9/13 cleaved and contained 2 nuclei after 24 h, 69%) or for in vivo development. In vivo development after 3 days resulted in 14/15 (93%) of the embryos transferred cleaving to the greater than or equal to 4-cell stage and after 7 days 6/16 (38%) reaching the expanded blastocyst stage. A total of 56 pronuclear exchange embryos were allowed to go to term, and 7 piglets were born. A similar manipulation procedure was used to transfer 2-, 4- or 8-cell nuclei to enucleated, activated meiotic metaphase II oocytes. Enucleation was effective in 74% (36/49) of the contemporary oocytes. Activation was successful in 81% (37/46) of nonmanipulated but pulsed oocytes versus 13% (4/31) of control oocytes (p less than 0.01). After 6 days in vivo, 9% (1/11) of the 2-cell nuclei, 8% (7/83) of the 4-cell nuclei, and 19% (11/57) of the 8-cell nuclei transferred to enucleated, activated meiotic metaphase II oocytes resulted in development to the compact morula or blastocyst stage (p less than 0.01). A total of 88 nuclear transfer embryos were transferred to recipient gilts for continued development. A single piglet was born after the transfer of a 4-cell nucleus to an enucleated, activated metaphase II oocyte and subsequent in vivo development.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
This study assessed the effects of oocyte age, cumulus cells and injection methods on in vitro development of intracytoplasmic sperm injection (ICSI) rabbit embryos. Oocytes were recovered from female rabbits superovulated with PMSG and hCG, and epididymal sperm were collected from a fertile male rabbit. The oocyte was positioned with the first polar body at 12 o'clock position, and a microinjection needle containing a sperm was inserted into the oocyte at 3 o'clock. Oolemma breakage was achieved by aspirating ooplasm, and the aspirated ooplasm and sperm were re-injected into the oocyte. The injected oocytes were cultured in M199 medium containing 10% fetal calf serum at 38 degrees C with 5% CO2 in air. The results showed that oocytes injected at 1 h post-collection produced a higher (p < 0.05) fertilization rate than those injected at 4 or 7 h post-collection. Blastocyst rate in the 1 h group was higher (p < 0.05) than in the 7 h group. Denuded oocytes (group A) and oocytes with cumulus cells (group B) were injected, respectively. Rates of fertilization and development of ICSI embryos were not significantly different (p > 0.05) between the two groups. Four ICSI methods were applied in this experiment. In methods 1 and 2, the needle tip was pushed across half the diameter of the oocyte, and oolemma breakage was achieved by either a single aspiration (method 1) or repeated aspiration and expulsion (method 2) of ooplasm. In methods 3 and 4, the needle tip was pushed to the oocyte periphery opposite the puncture site, and oolemma breakage was achieved by either a single aspiration (method 3) or repeated aspiration and expulsion (method 4) of ooplasm. Fertilization rate in method 2 was significantly higher (p < 0.05) than in methods 1 and 3. Blastocyst rates were not significantly different (p > 0.05) among methods 1, 3 and 4, but method 2 produced a higher (p < 0.05) blastocyst rate than method 3.  相似文献   

19.
Maternal RNA of mouse eggs and embryos was labeled by exposure of growing ovarian oocytes to 3H-uridine in vivo 8 to 16 days before ovulation and fertilization. Labeled embryos from the 1-cell stage to the blastocyst stage were collected, fixed, and autoradiographs of plastic sections prepared. The observed grain density was similar in the pronuclei and in the cytoplasm of 1-cell embryos. Knowing the volumes of nucleus and cytoplasm, it was determined that 3% of the maternal RNA was found in the pronuclei. It is suggested that some of this nuclear RNA may be stable small nuclear RNAs (e.g. U1 RNA) retained from the germinal vesicle stage through meiotic maturation. During the 2-cell stage and beyond, maternal RNA is degraded and labeled precursor is reincorporated into nuclear RNA, making it difficult to accurately quantitate the amount of nuclear maternal RNA. It is known that about one third of the total maternal RNA is lost between the 8-cell and blastocyst stages. It was found that cytoplasmic grain densities in inner and outer cells of the morula and blastocyst were not significantly different. Thus, the loss of maternal RNA does not proceed more rapidly in the differentiating trophoblast than in the inner cell mass.  相似文献   

20.
Experiments were conducted to investigate the beneficial effects of adding retinol (RT) and retinoic acid (RA) to bovine oocyte maturation media and insulin-like growth factor-I (IGF-I) to embryo culture under chemically-defined conditions. In Experiment 1.1, in vitro maturation (IVM) was performed in basic maturation media (bMM) and supplemented with 0.3microM RT or 0.5microM RA. For embryo development presumptive zygotes and embryos were placed in droplets of potassium simplex optimized medium (KSOM). Addition of RT and RA to bMM improved (p<0.05) blastocyst formation as compared with control treatments. In Experiment 1.2, using embryos originating from oocytes previously treated with RT and RA, the presumptive zygotes were placed in droplets of KSOM and embryos (2-4 cells) in droplets of fresh KSOM supplemented or not with IGF-I. The number of 2-4-cell stage embryos developing to the blastocyst and expanded blastocyst stages were greater (p<0.05) when embryo culture media was supplemented with IGF-I. In Experiment 2.1, IVM was conducted with bMM+FSH containing 0.3microM RT or 0.5microM RA. For embryo development, presumptive zygotes were placed in droplets of KSOM. Addition of RT or RA to IVM medium also enhanced (p<0.05) blastocyst formation. The supplementation of embryo culture media with IGF-I resulted in a greater number (p<0.05) of 2-4-cell stage embryos developing into blastocysts, expanded blastocysts and hatched blastocysts. In Experiment 2.2, using embryos originating from oocytes previously treated with RT and RA, presumptive zygotes were also placed in droplets of KSOM and embryos (2-4 cells) in droplets of fresh KSOM supplemented or not with IGF-I. The supplementation of embryo culture media with IGF-I resulted in a greater (p<0.05) number of 2-4-cell stage embryos developing to the blastocyst, expanded blastocyst and hatched blastocyst stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号