首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolated intestinal mucosa cells of the guinea pig were employed to study intestinal transport of bile acids. Chenodeoxycholate and lithocholate were rapidly taken up into jejunal and ileal cells by diffusion. Taurocholate and cholate however showed only a minor diffusion rate and were preferentially taken up by the ileal bile acid carrier. This uptake was saturable with an apparent Km of 231 μM and V of 7 nmol/mg protein per min for taurocholate; this bile acid was accumulated 90-fold. Its uptake was strongly inhibited by antimycin A, FCCP, ouabain or Na+-deficiency in the medium. Sugars or amino acids did not interfere with uptake. Experimental conditions were optimized with regard to incubation medium, cell amount, cell age and length of preincubation. It is concluded that ileal cells of the guinea pig are superior to other experimental models for characterizing the ileal bile acid carrier, because they allow us to determine initial rates of uptake and have a very efficient energetic coupling.  相似文献   

2.
Uridine uptake by isolated intestinal epithelial cells of guinea pig   总被引:4,自引:0,他引:4  
Uptake of uridine was studied in isolated intestinal epithelial cells of guinea pig. Uptake was not severely influenced by metabolism. Free uridine was accumulated within cells 13-fold. Uptake was saturable with an apparent Km value of 46 microM and a Vmax of 0.9 nmol/mg protein per min. Uracil inhibited uptake only slightly; adenosine, guanosine and cytosine inhibited strongly. Antimycin A and ouabain inhibited almost 90%. If the extracellular Na+ concentration was decreased to 5 mM, the rate of uptake decreased 6.5-fold. The stimulatory effect of Na+ was related to the transmembraneous Na+-gradient. Cells from jejunum transported about 30% faster than cells from ileum. In conclusion, isolated enterocytes of guinea pig posses an active transport system for uridine.  相似文献   

3.
Yin J  Wang Y  Li Q  Shang Z  Su S  Cheng Y  Xu Y 《Life sciences》2004,76(6):613-628
The effects of nanomolar concentration of dihydroouabain (DHO) on L-type calcium current (ICa-L), TTX-sensitive calcium current (ICa(TTX)), and intracellular calcium concentration ([Ca2+]i) were investigated in guinea pig ventricular myocytes. The whole-cell patch-clamp technique was used to record ICa-L and ICa(TTX); [Ca2+]i was detected and recorded with the confocal microscopy. The nanomolar concentration of DHO increased the ICa-L, ICa(TTX), and [Ca2+]i, which could be partially inhibited by nisoldipine or TTX, but still appeared in the absence of extracellular K+ and Na+. These data suggest that DHO could increase [Ca2+]i in non-beating myocytes via stimulating the ICa-L and ICa(TTX), or perhaps triggering directly a release of intracellular calcium.  相似文献   

4.
5.
Summary Ca++-ATPase activity was demonstrated histochemically at light- and electron-microscopic levels in inner and outer segments of retinal photoreceptor cells of the guinea pig with the use of a newly developed one-step lead-citrate method (Ando et al. 1981). The localization of ouabain-sensitive, K+-dependent p-nitrophenylphosphatase (K+-NPPase) activity, which represents the second dephosphorylative step of the Na+-K+-ATPase system, was studied by use of the one-step method newly adapted for ultracytochemistry (Mayahara et al. 1980). In retinal photoreceptor cells fixed for 15 min in 2% paraformaldehyde the electron-dense Ca++-ATPase reaction product accumulated significantly on the inner membranes of the mitochondria but not on the plasmalemma or other cytoplasmic elements of the inner segments. The membranes of the outer segments remained unstained except the membrane arrays in close apposition to the retinal pigment epithelium. The cytochemical reaction was Ca++- and substrate-dependent and showed sensitivity to oligomycin. When Mg++-ions were used instead of Ca++-ions, a distinct reaction was also found on mitochondrial inner membranes.In contrast to the localization of the Ca++ -ATPase activity, the K+-NPPase activity was demonstrated only on the plasmalemma of the inner segments, but not on the mitochondria, other cytoplasmic elements or the outer segment membranes. This reaction was almost completely abolished by ouabain or by elimination of K+ from the incubation medium.Fellow of the Alexander von Humboldt Foundation, Bonn, Federal Republic of Germany  相似文献   

6.
In guinea pig gallbladder epithelial cells, an increase in intracellular cAMP levels elicits the rise of anion channel activity. We investigated by patch-clamp techniques whether K(+) channels were also activated. In a cell-attached configuration and in the presence of theophylline and forskolin or 8-Br-cAMP in the cellular incubation bath, an increase of the open probability (P(o)) values for Ca(2+)-activated K(+) channels with a single-channel conductance of about 160 pS, for inward current, was observed. The increase in P(o) of these channels was also seen in an inside-out configuration and in the presence of PKA, ATP, and cAMP, but not with cAMP alone; phosphorylation did not influence single-channel conductance. In the inside-out configuration, the opioid loperamide (10(-5) M) was able to reduce P(o) when it was present either in the microelectrode filling solution or on the cytoplasmic side. Detection in the epithelial cells by RT-PCR of the mRNA corresponding to the alpha subunit of large-conductance Ca(2+)-activated K(+) channels (BK(Ca)) indicates that this gallbladder channel could belong to the BK family. Immunohistochemistry experiments confirm that these cells express the BK alpha subunit, which is located on the apical membrane. Other K(+) channels with lower conductance (40 pS) were not activated either by 8-Br-cAMP (cell-attached) or by PKA + ATP + cAMP (inside-out). These channels were insensitive to TEA(+) and loperamide. The data demonstrate that under conditions that induce secretion, phosphorylation activates anion channels as well as Ca(2+)-dependent, loperamide-sensitive K(+) channels present on the apical membrane.  相似文献   

7.
Hyperphosphatemia and II(o) hyperparathyroidism are common and severe complications of chronic renal failure. Reduced dietary phosphorus has been shown to be an effective treatment in reducing serum phosphate and serum PTH. 2(')-Phosphophloretin inhibited small intestine apical membrane Na(+)/phosphate cotransport and reduced serum phosphate in adult rats. 2(')-PP and phosphoesters of phloretin were tested for inhibition of human small intestine brush border membrane alkaline phosphatase activity and for inhibition of Na(+)-dependent phosphate uptake. The IC(50)'s for inhibition of alkaline phosphatase suggested an order of inhibitory potency of 4-PP > phloretin > 4(')-PP > 2(')-PP. Inhibition of Na(+)-dependent phosphate uptake followed the sequence 2(')-PPz.Gt;4(')-PP > 4-PP > phloretin. These results are consistent with 2(')-PP being a specific inhibitor of human intestinal brush border membrane Na(+)/phosphate cotransport.  相似文献   

8.
Electrophysiology of cultured human lens epithelial cells   总被引:2,自引:0,他引:2  
Summary The lens epithelial K+ conductance plays a key role in maintaining the lens ionic steady state. The specific channels responsible for this conductance are unknown. We used cultured lens epithelia and patch-clamp technology to address this problem. Human lens epithelial explants were cultured and after 1–4 passages were dissociated and used in this study. The cells from which we measured had a mean diameter of 31±1 m (sem,n=26). The resting voltage was –19±4 mV (sem,n=10) and the input resistance was 2.5±0.5 G (sem,n=17) at –60 mV. Two currents were prominent in whole-cell recordings. An outwardly rectifying current was seen in nearly every cell. The magnitude of this current was a function of K+ concentration and was blocked by 3mm tetraethylammonium. The instantaneous current-voltage relationship was linear in symmetric K+, implying that the outward rectificiation was due to gating. The current showed complex activation and inactivation kinetics. The second current seen was a transient inward current. This current had kinetics very similar to the traditional Na+ current of excitable cells and was blocked by 0.1 m tetrodotoxin. In single-channel recordings, a 150-pS K+ channel and a 35-pS nonselective cation channel were seen but neither account for the macroscopic currents measured.  相似文献   

9.
Na+,K+-ATPase activity was determined in fetal guinea pig brain at 35, 40, 45, 50, 55, and 60 days of gestation. The activity remained at a constant level during the early periods (35–45 days) of gestation and increased significantly during 45–60 days. Following maternal hypoxia, the activity of Na+,K+-ATPase in the term (60 days) fetal brain was reduced by 50% whereas the preterm (50 days) brain activity was unaffected. Under identical hypoxic conditions, the enzymatic activity of adult brain was significantly reduced by 20%. Na+,K+-ATPase obtained from fetal brain (50 days of gestation) has both a low and a high affinity for ATP (K m values =0.50 and 0.053 mM and correspondingV max values =10.77 and 2.82 umoles Pi/mg protein/hr), whereas the enzyme in the adult brain has only a low affinity (K m=1.67 mM andV max=20.32 umoles Pi/mg protein/hr). The high and low affinity sites for ATP in the fetal brain suggests a mechanism essential for the maintenance of cellular ionic gradients at low concentrations of ATP and which would provide the fetal brain with a greater tolerance to hypoxia. The high sensitivity of Na+,K+-ATPase activity to hypoxia in guinea pig brain at term suggests that the cell membrane functions of the fetal brain may be more susceptible to hypoxia at term than it is earlier in gestation.  相似文献   

10.
11.
Endotoxins (lipopolysaccharides; LPS) are known to cause multiple organ failure, including renal dysfunction. LPS triggers the synthesis and release of cytokines and the vasodilatör nitric oxide (NO). A major contributor to the increase in NO production is LPS-stimulated expression of inducible nitric oxide synthase (iNOS). This occurs in vasculature and most organs including the kidney. During endotoxemia, NO and superoxide react spontaneously to form the potent and versatile oxidant peroxynitrite (ONOO) and the formation of 3-nitrotyrosine (nTyr)-protein adducts is a reliable biomarker of ONOO generation. Therefore, the present study was aimed at investigating the role of endogenous nitric oxide in regulating Na+,K+-ATPase activity in the kidney, and at investigating the possible contribution of reactive nitrogen species (RNS) by measuring of iNOS activity. In addition, the present study was aimed at investigating the relationship between nTyr formation with iNOS and Na+,K+-ATPase activities. Previously in our study, nTyr was not detectable in kidney of normal control animals but was detected markedly in LPS exposed animals. In this study, kidney Na+,K+-ATPase activity were maximally inhibited 6 h after LPS injection (P:0.000) and LPS treatment significantly increased iNOS activity of kidney (P:0.000). The regression analysis revealed a very close correlation between Na+,K+-ATPase activity and nTyr levels of LPS treated animals (r = –0.868, P = 0.001). Na+,K+-ATPase activity were also negatively correlated with iNOS activity (r = –0.877, P = 0.001) in inflamed kidney. These data suggest that NO and ONOO contribute to the development of oxidant injury. Furthermore, the source of NO may be iNOS. iNOS are expressed by the kidney, and their activity may increase following LPS administration. In addition, NO and ONOO formation inhibited Na+,K+-ATPase activity. This results also have strongly suggested that bacterial LPS disturbs activity of membrane Na+,K+-ATPase that may be an important component leading to the pathological consequences such as renal dysfunction in which the production of RNS are increased as in the case of LPS challenge. (Mol Cell Biochem 271: 107–112, 2005)  相似文献   

12.
目的建立一种简便易行的豚鼠原代肾小管上皮细胞培养方法。方法运用筛网分离法和多种酶消化法获取高纯度的肾小管上皮细胞。利用免疫组化法和形态学观察法鉴定培养的肾小管上皮细胞性质及纯度。结果通过肾小管节段贴壁,胶原酶消化组织节段和细胞等方法,有效地促进肾小管原代细胞增殖;胰酶节段消化法的细胞贴壁效果稍差,细胞传代状态不理想;胰酶消化法则细胞贴壁较少,细胞生长状态较差。结论培养豚鼠原代。肾小管上皮细胞是可行的。  相似文献   

13.
Serum, liver and brain tryptophan concentrations and brain Na+K+-ATPase activity were studied in streptozotocin diabetic rats after an acute tryptophan load. Results show that tryptophan administration in the experimental diabetic group produces a generalized fall in tryptophan uptake in all the brain regions studied, though it does not increase serum and hepatic tryptophan concentrations. These parameters are normalized in insulin-treated diabetic rats. With regard to Na+K+-ATPase, diabetic animals showed a diminished and unchanged activity; whereas, the other two experimental groups showed a gradual decrease and a negative correlation with brain tryptophan uptake.  相似文献   

14.
Summary Patch-clamp studies of whole-cell ionic currents were carried out in parietal cells obtained by collagenase digestion of the gastric fundus of the guinea pig stomach. Applications of positive command pulses induced outward currents. The conductance became progressively augmented with increasing command voltages, exhibiting an outwardly rectifying current-voltage relation. The current displayed a slow time course for activation. In contrast, inward currents were activated upon hyperpolarizing voltage applications at more negative potentials than the equilibrium potential to K+ (E K). The inward currents showed time-dependent inactivation and an inwardly rectifying current-voltage relation. Tail currents elicited by voltage steps which had activated either outward or inward currents reversed at nearE K, indicating that both time-dependent and voltagegated currents were due to K+ conductances. Both outward and inward K+ currents were suppressed by extracellular application of Ba2+, but little affected by quinine. Tetraethylammonium inhibited the outward current without impairing the inward current, whereas Cs+ blocked the inward current but not the outward current. The conductance of inward K+ currents, but not outward K+ currents, became larger with increasing extracellular K+ concentration. A Ca2+-mobilizing acid secretagogue, carbachol, and a Ca2+ ionophore, ionomycin, brought about activation of another type of outward K+ currents and voltage-independent cation currents. Both currents were abolished by cytosolic Ca2+ chelation. Quinine preferentially inhibited this K+ current. It is concluded that resting parietal cells of the guinea pig have two distinct types of voltage-dependent K+ channels, inward rectifier and outward rectifier, and that the cells have Ca2+-activated K+ channels which might be involved in acid secretion under stimulation by Ca2+-mobilizing secretagogues.  相似文献   

15.
Summary Basal-lateral plasma membrane vesicles were isolated from rat duodenum and jejunum by a Percoll gradient centrifugation technique. Ca-uptake into and Ca-release from the vesicles was studied by a rapid filtration method. In the absence of Na (K-medium) at a Ca concentration of 0.05 mmol/liter and pH 7.4, addition of 5mm MgATP stimulated Ca-uptake up to 10-fold as compared to a control without ATP. Since the Ca-ionophore A23187 (2 g/ml) prevented the accumulation of Ca above the equilibrium uptake and rapidly released Ca accumulated by the vesicles in the presence of ATP, it is concluded that the ATP-dependent uptake of Ca involves accumulation of Ca inside the vesicles. The ATP-driven Ca-transport comigrates with the (Na+K)-ATPase and dissociates from the marker enzymes for mitochondrial inner membrane, endoplasmic reticulum and brush border membrane. It is not inhibited by 1 g/ml oligomicin or 0.1 mmol/liter ruthenium red. Replacing K by Na inhibits ATP-dependent Ca-uptake by 60%. Efflux of Ca from passively preloaded vesicles is strongly temperature sensitive and enhanced by A23187. An inwardly directed Na-gradient stimulates Ca-efflux as compared to a K-gradient. Addition of gramicidin reduces the Na-stimulation of Ca-efflux, indicating direct coupling of Na and Ca fluxes across basal-lateral membranes. The results suggest that basal-lateral membranes possess two distinct mechanisms for Ca-transport:a) ATP-driven Ca-transport andb) Na/Ca-exchange.  相似文献   

16.
The distribution of transmembrane proteins is considered to be crucial for their activities because these proteins mediate the information coming from outside of cells. A small GTPase Rho participates in many cellular functions through its downstream effectors. In this study, we examined the effects of RhoA on the distribution of Na(+),K(+)-ATPase, one of the transmembrane proteins. In polarized renal epithelium, Na(+),K(+)-ATPase is known to be localized at the basolateral membrane. By microinjection of the constitutively active mutant of RhoA (RhoA(Val14)) into cultured renal epithelial cells, Na(+),K(+)-ATPase was translocated to the spike-like protrusions over the apical surfaces. Microinjection of the constitutively active mutant of other Rho family GTPases, Rac1 or Cdcd42, did not induce the translocation. The translocation induced by RhoA(Val14) was inhibited by treatment with Y-27632, a Rho-kinase specific inhibitor, or by coinjection of the dominant negative mutant of Rho-kinase. These results indicate that Rho and Rho-kinase are involved in the regulation of the localization of Na(+),K(+)-ATPase. We also found that Na(+),K(+)-ATPase seemed to be colocalized with ERM proteins phosphorylated at T567 (ezrin), T564 (radixin), and T558 (moesin) in cells microinjected with RhoA(Val14).  相似文献   

17.
Summary Active transport of sodium by pulmonary alveolar epithelial cells (AEC) is believed to be an important component of edema clearance in the normal and injured lung. Data supporting this premise have come from measurements of sodium movement across AEC monolayers or from perfused lung model systems. However, direct measurement of fluid flux across AEC monolayers has not been reported. In the present work, AEC were studied with an experimental system for the measurement of fluid flux (Jv) across functionally intact cell monolayers. Primary adult rat type II alveolar epithelial cells were cultured on 0.8 μm nuleopore filters previously coated with gelatin and fibronectin. Intact monolayers were verified by high electrical resistance (> 1000 Θ) at 4–5 d of primary culture. At the same time interval, transmission electron microscopy revealed cells with type I cell-like morphology throughout the monolayer. These were characterized by both adherens and tight junctional attachments. Fluid flux across the monolayers was measured volumetrically over a period of 2 h in the presence of HEPES-buffered DMEM containing 3% fatty acid-free bovine serum albumin. Flux (Jv) was inhibited 39% by 1 × 10−4 M ouabain (P < 0.01) and 27% by 5 × 10−4 M amiloride (P < 0.05). These data support the concept that AEC Na+/K+-ATPase and Na+ transport systems are important determinants of AEC transepithelial fluid movement in vitro.  相似文献   

18.
M. de Agazio  R. Federico  S. Grego 《Planta》1989,177(3):388-392
The inhibition of K+ uptake through the plasma membrane resulting from injury caused by cutting, or from application of polyamines (PAs), has been investigated in root segments of maize (Zea mays L.) and pea (Pisum sativum L.). It was found, for both treatments, that K+ uptake recovered if the segments were washed for 2 h. The K+ uptake inhibited by cutting and that inhibited by spermidine treatment were stimulated to the same extent by fusicoccin. In addition, there was a correlation between the extent of the recovery of K+ uptake caused by washing and the distribution, along the root axis, of both PAs and the activities of enzymes responsible for PA degradation. In apical segments of maize, where the PA content and the activity of the degradative enzyme polyamine oxidase (EC 1.5.3.3) were higher than in the more distal segments, the recovery of K+ uptake caused by washing was also higher. On the other hand, the opposite trend was observed in root segments of pea, where the PA content and the activity of the degradative enzyme diamine oxidase (EC 1.4.3.6) were higher in distal segments in which K+ uptake was greatly stimulated by washing. The effect of the amine-oxidase inhibitor, aminoguanidine, indicates that the degradation products of PAs are involved in the mechanism of inhibition of K+ uptake by PAs. The data also seem to indicate that PAs and their degradation products are responsible for the inhibition of K+ uptake occurring as a result of injury sustained by cutting roots into segments.Abbreviations DAO diamine oxidase - FC fusicoccin - PA polyamine - PAO polyamine oxidase - PUT putrescine - SPD spermidine  相似文献   

19.
Summary In the isolated, superfused mouse lacrimal gland, intracellular Na+ activities (aNa i ) of the acinar cells were directly measured with double-barreled Na+-selective microelectrodes. In the nonstimulated conditionaNa i was 6.5±0.5 mM and membrane potential (V m ) was –38.9±0.4 mV. Addition of 1 mM ouabain or superfusion with a K+-free solution slightly depolarized the membrane and caused a gradual increase inaNa i . Stimulation with acetylcholine (ACh, 1 M) caused a membrane hyperpolarization by about 20 mV and an increase inaNa i by about 9 mM in 5 min. The presence of amiloride (0.1 mM) reduced the ACh-induced increase inaNa i by approximately 50%, without affectingV m and input resistance in both nonstimulated and ACh-stimulated conditions. Acid loading the acinar cells by an addition/withdrawal of 20 mM NH4Cl or by replacement of Tris+-buffer saline solution with HCO 3 /CO2-buffered solution increasedaNa i by a few mM. Superfusion with a Cl-free NO 3 solution or 1 mM furosemide or 0.5 mM bumetanide-containing solution had little effect on the restingaNa i levels, however, it reduced the ACh-induced increase inaNa i by about 30%. Elimination of metabolite anions (glutamate, fumarate and pyruvate) from the superfusate reduced both the restingaNa i and the ACh-induced increase inaNa i .The present results suggest the presence of multiple Na+ entry mechanisms activated by ACh, namely, Na+/H+ exchange, Na-K-Cl cotransport and organic substrate-coupled Na+ transport mechanisms.  相似文献   

20.
The mechanisms of cell death signaling triggered by cardiotonic steroids are poorly understood. Based on massive detachment of ouabain-treated Madin-Darby canine kidney (MDCK) cells, it may be proposed that the cytotoxic action of these compounds is mediated by anoikis, i.e. a particular mode of death occurring in cells lacking cell-to-extracellular matrix interactions. We tested this hypothesis. Six hour incubation of MDCK cells with ouabain, marinobufagenin or K+-free medium almost completely blocked Na+,K+-ATPase, increased Nai+ content by ∼10-fold and suppressed cell attachment to regular-plastic-plates by up to 5-fold. In contrast, the death of attached cells was observed after 24-h incubation with ouabain but not in the presence of marinobufagenin or K+-free medium. Cells treated with ouabain and undergoing anoikis on ultra-low attachment plates exhibited different cell volume behaviour, i.e. swelling and shrinkage, respectively. The pan-caspase inhibitor z-VAD.fmk and the protein kinase C activator PMA rescued MDCK cells from anoikis but did not influence the survival of ouabain-treated cells, whereas medium acidification from pH 7.2 to 6.7 almost completely abolished the cytotoxic action of ouabain, but did not significantly affect anoikis. Our results show that the Na i+,Ki+-independent mode of MDCK cell death evoked by ouabain is not mediated by anoikis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号