首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron is an essential element for the neoplastic cell growth, and iron chelators have been tested for their potential anti-proliferative and cytotoxic effects. To determine the mechanism of cell death induced by iron chelators, we explored the pathways of the three structurally related mitogen-activated protein (MAP) kinase subfamilies during apoptosis induced by iron chelators. We report that the chelator deferoxamine (DFO) strongly activates both p38 MAP kinase and extracellular signal-regulated kinase (ERK) at an early stage of incubation, but slightly activates c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) at a late stage of incubation. Among three MAP kinase blockers used, however, the selective p38 MAP kinase inhibitor SB203580 could only protect HL-60 cells from chelator-induced cell death, indicating that p38 MAP kinase serves as a major mediator of apoptosis induced by iron chelator. DFO also caused release of cytochrome c from mitochondria and induced activation of caspase 3 and caspase 8. Interestingly, treatment of HL-60 cells with SB203580 greatly abolished cytochrome c release, and activation of caspase 3 and caspase 8. Collectively, the current study reveals that p38 MAP kinase plays an important role in iron chelator-mediated cell death of HL-60 cells by activating downstream apoptotic cascade that executes cell death pathway.  相似文献   

2.
Shiga toxin 1 (Stx1) produced by Escherichia coli has been reported to induce apoptosis in many different cell types, including Burkitt's lymphoma (BL) cells. Since it has been established that the caspases play essential roles as the effector molecules in the apoptotic process in most cases, we examined the kinetics of caspase activation during the process of Stx1-mediated apoptosis of BL cells. Using Ramos BL cells that are highly sensitive to Stx1-mediated cytotoxicity, we observed that multiple caspases, including caspase-3, -7, and -8 were promptly activated following Stx1 treatment, as indicated by both the procaspase cleavages and enhancement of cleavage of the tetrapeptide substrates of the caspases. In addition, the inhibition assay revealed that caspase-8 is located upstream of both caspase-3 and -7, suggesting that Stx1-mediated apoptosis utilizes a similar caspase cascade to that involved in Fas-mediated apoptosis. Neither anti-Fas mAb nor TNF-alpha, however, affected the Stx1-mediated apoptosis of Ramos cells. Although the precise mechanism of Stx1-mediated activation of caspase-8 is still unclear, we have demonstrated that crosslinkage of CD77, a functional receptor for Stx1, with specific antibody is sufficient to induce activation of caspase-8. Our findings should provide new insight into the understanding of the molecular basis of Stx1-mediated cell injury.  相似文献   

3.
Molecular mechanisms of caspase regulation during apoptosis   总被引:22,自引:0,他引:22  
Caspases, which are the executioners of apoptosis, comprise two distinct classes, the initiators and the effectors. Although general structural features are shared between the initiator and the effector caspases, their activation, inhibition and release of inhibition are differentially regulated. Biochemical and structural studies have led to important advances in understanding the underlying molecular mechanisms of caspase regulation. This article reviews these latest advances and describes our present understanding of caspase regulation during apoptosis.  相似文献   

4.
Cytotoxic lymphocytes induce apoptosis of target cells by degranulating and releasing the serine protease granzyme B and the pore forming protein perforin. Granzyme B is an aspartic acid protease similar to members of the interleukin 1beta converting enzyme (ICE) family. We review the evidence for the participation members of the ICE family of proteases and cdc2 kinase in granzyme B-induced apoptosis.  相似文献   

5.
Mechanisms of caspase activation and inhibition during apoptosis   总被引:16,自引:0,他引:16  
YIGONGSHI 《Cell research》2002,12(3):277-277
  相似文献   

6.
Mechanisms of caspase activation and inhibition during apoptosis   总被引:8,自引:0,他引:8  
Shi Y 《Molecular cell》2002,9(3):459-470
Caspases are central components of the machinery responsible for apoptosis. Recent structural and biochemical studies on procaspases, IAPs, Smac/DIABLO, and apoptosome have revealed a conserved mechanism of caspase activation and inhibition. This article reviews these latest advances and presents our current understanding of caspase regulation during apoptosis.  相似文献   

7.
Mechanisms of caspase activation and inhibition during apoptosis   总被引:10,自引:0,他引:10  
Apoptosis is primarily executed by active caspases, which are derived from the inactive procaspase zymogens through proteolytic cleavage. We determined the crystal structures of a caspase zymogen, procaspase-7, and an active caspase-7 without any bound inhibitors. Compared to the inhibitor-bound caspase-7, procaspase-7 zymogen exhibits significant structural differences surrounding the catalytic cleft, which precludes the formation of a productive conformation. Proteolytic cleavage in between the large and small subunits allows rearrangement of essential loops in the active site, priming active caspase-7 for inhibitor/substrate binding. Strikingly, binding by inhibitors causes a 180-degree-flipping of the N-terminus in the small subunit, which interacts with and stabilizes the catalytic cleft. These analyses reveal the structural mechanisms of caspase activation and demonstrate that the inhibitor/substrate binding is a process of  相似文献   

8.
9.
Protein–protein interaction networks (interactomes) define the functionality of all biological systems. In apoptosis, proteolysis by caspases is thought to initiate disassembly of protein complexes and cell death. Here we used a quantitative proteomics approach, protein correlation profiling (PCP), to explore changes in cytoplasmic and mitochondrial interactomes in response to apoptosis initiation as a function of caspase activity. We measured the response to initiation of Fas‐mediated apoptosis in 17,991 interactions among 2,779 proteins, comprising the largest dynamic interactome to date. The majority of interactions were unaffected early in apoptosis, but multiple complexes containing known caspase targets were disassembled. Nonetheless, proteome‐wide analysis of proteolytic processing by terminal amine isotopic labeling of substrates (TAILS) revealed little correlation between proteolytic and interactome changes. Our findings show that, in apoptosis, significant interactome alterations occur before and independently of caspase activity. Thus, apoptosis initiation includes a tight program of interactome rearrangement, leading to disassembly of relatively few, select complexes. These early interactome alterations occur independently of cleavage of these protein by caspases.  相似文献   

10.
Cell death by apoptosis requires a precise plan of destruction of DNA and proteins. In this paper, we review the current knowledge on the different DNA-degrading enzymes which are activated in apoptotic cells. The activation of DNases by upstream proteases is also discussed.  相似文献   

11.
We have examined UV irradiation-induced cell death in Jurkat cells and evaluated the relationships that exist between inhibition of caspase activity and the signaling mechanisms and pathways of apoptosis. Jurkat cells were irradiated with UV-C light, either with or without pretreatment with the pan-caspase inhibitor, z-VAD-fmk (ZVAD), or the more selective caspase inhibitors z-IETD-fmk (IETD), z-LEHD-fmk (LEHD), and z-DEVD-fmk (DEVD). Flow cytometry was used to examine alterations in viability, cell size, plasma membrane potential (PMP), mitochondrial membrane potential (DeltaPsi(mito)), intracellular Na(+) and K(+) concentrations, and DNA degradation. Processing of pro-caspases 3, 8, and 9 and the pro-apoptotic protein Bid was determined by Western blotting. UV-C irradiation of Jurkat cells resulted in characteristic apoptosis within 6 h after treatment and pretreatment of cells with ZVAD blocked these features. In contrast, pretreatment of the cells with the more selective caspase inhibitors under conditions that effectively blocked DNA degradation and inhibited caspase 3 and 8 processing as well as Bid cleavage had little protective effect on the other apoptotic characteristics examined. Thus, both intrinsic and extrinsic pathways are activated during UV-induced apoptosis in Jurkat cells and this redundancy appears to assure cell death during selective caspase inhibition.  相似文献   

12.
Caspases are a family of cysteine-proteases, activated upon several different stimuli, which execute apoptosis in many cell death models. Previous work of our group has shown rats have the highest rate of apoptosis during the first wave of spermatogenesis (between 20 and 25 days after birth), as evaluated by TUNEL and caspase activity. However, the hierarchical order of caspase activation and the relevance of each caspase during germ cell apoptosis are not clear. Thus, the goal of this work is to take a pharmacological approach to dissect the apoptosis pathway of caspase activation. Results showed that intratesticular injection of a caspase-8 inhibitor (z-IETD-fmk), or a pan-caspase inhibitor (z-VAD- fmk), significantly decreased the cleavage of p115 and PARP, two endogenous substrates of caspases, in 22-day-old rats. Additionally, these inhibitors promoted a significant reduction in the number of apoptotic germ cells. On the other hand, intratesticular injection of two different inhibitors of the intrinsic pathway (z-LEHD-fmk and minocycline) did not have any effect upon caspase substrates cleavage (p115 and PARP) or the number of apoptotic germ cells. Therefore, we conclude that the extrinsic pathway of apoptosis plays an important role in physiological germ cell apoptosis during the first round of spermatogenesis in the rat.  相似文献   

13.
Cross-talk between calpain and caspase proteolytic systems has complicated efforts to determine their distinct roles in apoptotic cell death. This study examined the effect of overexpressing calpastatin, the specific endogenous calpain inhibitor, on the activity of the two proteolytic systems following an apoptotic stimulus. Human SH-SY5Y neuroblastoma cells were stably transfected with full-length human calpastatin cDNA resulting in 20-fold overexpression based on Western blot and 5-fold greater calpain inhibitory activity in cell extracts. Wild type and calpastatin overexpressing (CST1) cells were neuronally differentiated and apoptosis-induced with staurosporine (0.1-1.0 microm). Calpastatin overexpression decreased calpain activation, increased caspase-3-like activity, and accelerated the appearance of apoptotic nuclear morphology. Following 0.1-0.2 microm staurosporine, plasma membrane integrity based on calcein-acetoxymethyl fluorescence was significantly greater at 24 h in differentiated CST1 compared with differentiated wild type cells. However, this protective effect was lost at higher staurosporine doses (0.5-1.0 microm), which resulted in pronounced caspase-mediated degradation of the overexpressed calpastatin. These results suggest a dual role for calpains during neuronal apoptosis. In the early execution phase, calpain down-regulates caspase-3-like activity and slows progression of apoptotic nuclear morphology. Subsequent calpain activity, facilitated by caspase-mediated degradation of calpastatin, contributes to plasma membrane disruption and secondary necrosis.  相似文献   

14.
Proteases of the caspase family play key roles in the execution of apoptosis. In Drosophila there are seven caspases, but their roles in cell death have not been studied in detail due to a lack of availability of specific mutants. Here, we describe the generation of a specific mutant of the Drosophila gene encoding DRONC, the only caspase recruitment domain (CARD) containing apical caspase in the fly. dronc mutants are pupal lethal and our studies show that DRONC is required for many forms of developmental cell deaths and apoptosis induced by DNA damage. Furthermore, we demonstrate that DRONC is required for the autophagic death of larval salivary glands during metamorphosis, but not for histolysis of larval midguts. Our results indicate that DRONC is involved in specific developmental cell death pathways and that in some tissues, effector caspase activation and cell death can occur independently of DRONC.  相似文献   

15.
The cytoplasmic protein Alix/AIP1 (ALG-2 interacting protein X) is involved in cell death through mechanisms which remain unclear but require its binding partner ALG-2 (apoptosis-linked gene-2). The latter was defined as a regulator of calcium-induced apoptosis following endoplasmic reticulum (ER) stress. We show here that Alix is also a critical component of caspase 9 activation and apoptosis triggered by calcium. Indeed, expression of Alix dominant-negative mutants or downregulation of Alix afford significant protection against cytosolic calcium elevation following thapsigargin (Tg) treatment. The function of Alix in this paradigm requires its interaction with ALG-2. In addition, we demonstrate that caspase 9 activation is necessary for apoptosis induced by Tg and that this activation is impaired by knocking down Alix. Altogether, our findings identify, for the first time, Alix as a crucial mediator of Ca2+ induced caspase 9 activation.  相似文献   

16.
17.
18.
19.
We found that antitumor drugs such as cytotrienin A, camptothecin, taxol, and 5-fluorouracil induced the activation of a 36-kDa protein kinase (p36 myelin basic protein (MBP) kinase) during apoptosis in human promyelocytic leukemia HL-60 cells. This p36 MBP kinase, which phosphorylates MBP in an in-gel kinase assay, results from the caspase-3-mediated proteolytic cleavage of MST/Krs protein, a mammalian Ste20-like serine/threonine kinase. Herein the correlation between cytotrienin A-induced apoptosis and the activation of MST/Krs proteins was examined in human tumor cell lines, including leukemia-, lung-, epidermoid-, cervix-, stomach-, and brain-derived cell lines. In cytotrienin A-sensitive cell lines, we observed a strong activation of p36 MBP kinase by cleavage of the C-terminal regulatory domain of full-length MST/Krs proteins by caspase-3. When the kinase-inactive mutant form of MST/Krs protein was overexpressed in cytotrienin A-sensitive HL-60 cells, the cytotrienin A-induced apoptosis was partially inhibited. Because cytotrienin A also activated c-Jun N-terminal kinase, we examined the effect of the expression of dominant negative c-Jun on cytotrienin A-induced apoptosis. The expression of dominant negative c-Jun also partially inhibited cytotrienin A-induced apoptosis. Furthermore, coexpression of kinase-inactive MST/Krs protein and dominant negative c-Jun completely suppressed cytotrienin A-induced apoptosis. These findings suggest that the proteolytic activation of MST/Krs and c-Jun N-terminal kinase activation are involved in cytotrienin A-induced apoptosis in human tumor cell lines.  相似文献   

20.
Sun YL  Zhao Y  Hong X  Zhai ZH 《FEBS letters》1999,462(3):317-321
We report here the detection of the release of cytochrome c from mitochondria into the cytosol during menadione-induced apoptosis in tobacco protoplasts. Western blot analysis indicated that the caspase specific inhibitors AC-DEVD-CHO (Ac-Asp-Glu-Val-Asp-aldehyde) and AC-YVAD-CHO (N-acetyl-Try-Val-Ala-aspartinal) inhibited the degradation of a caspase 3 specific substrate PARP (poly(ADP-ribose) polymerase), and they had no effect on the release of cytochrome c. Further study showed that menadione could not induce apoptosis of mouse liver nuclei in tobacco cytosol extract containing no mitochondria. However, when cytochrome c or mitochondria was added into the cytosol extract, apoptosis of mouse liver nuclei and the degradation of PARP could both be detected. The results provide strong evidence that menadione can induce apoptosis in tobacco protoplasts via the release of cytochrome c from mitochondria into the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号