首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The performance of a neural network that simulates the vertical saccade-generating portion of the primate brain is evaluated. Consistent with presently available anatomical evidence, the model makes use of an eye displacement signal for its feedback. Its major features include a simple mechanism for resetting its integrator at the end of each saccade, the ability to generate staircases of saccades in response to stimulation of the superior colliculus, and the ability to account for the monotonic relation between motor error and the instantaneous discharge of presaccadic neurons of the superior colliculus without placing the latter within the local feedback loop. Several experimentally testable predictions about the effects of stimulation or lesion of saccaderelated areas of the primate brain are made on the basis of model output in response to “stimulation” or “lesion” of model elements.  相似文献   

3.
Attention is fundamental to all cognition. In the primate brain, it is implemented by a large-scale network that consists of areas spanning across all major lobes, also including subcortical regions. Classical attention accounts assume that control over the selection process in this network is exerted by ‘top-down’ mechanisms in the fronto-parietal cortex that influence sensory representations via feedback signals. More recent studies have expanded this view of attentional control. In this review, we will start from a traditional top-down account of attention control, and then discuss more recent findings on feature-based attention, thalamic influences, temporal network dynamics, and behavioral dynamics that collectively lead to substantial modifications. We outline how the different emerging accounts can be reconciled and integrated into a unified theory.  相似文献   

4.
A system model of the primate neocortex is presented, based mainly on the neuroanatomy of the rhesus macaque monkey and consisting of a set of processing modules arranged as a perception-action hierarchy. These modules correspond to regions of the neocortex and their connectivity to that of the neocortex. A computational approach based on predicate logic is explained, and the results of a computer implementation of the model are reported, which demonstrate social behaviors involving affiliation and social conflict. The behavioral states of primates involved in these behaviors can be represented by the states of the system model, which have a logical representation and a diagrammatic form. It is shown how the behavioral states in goal-directed behaviors can be represented and also their short term moment-to-moment development in time. It is then shown how the state of social interaction among two or more primates can be represented, using their individual behavioral states, with interindividual action and perception. The causal dynamics of behavioral states is explained and also a control mechanism, namely, the use of confirmation signals, which stabilizes behavioral states and their dynamics. Stabilized behavioral states are seen as corresponding to coherent activations of the system, resulting from successful selection of module activations and intermodule communication with confirmation.  相似文献   

5.
Early recognition of whether a product has potential as a new therapy for treating multiple sclerosis (MS) relies upon the quality of the animal models used in the preclinical trials. The promising effects of new treatments in rodent models of experimental autoimmune encephalomyelitis (EAE) have rarely been reproduced in patients suffering from MS. EAE in outbred marmoset monkeys, Callithrix jacchus, is a valid new model, and might provide an experimental link between EAE in rodent models and human MS. Using magnetic resonance imaging techniques similar to those used in patients suffering from MS pathological abnormalities in the brain, white matter of the animal can be visualized and quantified. Moreover, NMR spectroscopy, in combination with pattern recognition, offers an advanced uroscopic technique for the identification of biomarkers of inflammatory demyelination.  相似文献   

6.
7.
8.
Movements are necessary to engage the world, but every movement results in sensorimotor ambiguity. Self-movements cause changes to sensory inflow as well as changes in the positions of objects relative to motor effectors (eyes and limbs). Hence the brain needs to monitor self-movements, and one way this is accomplished is by routing copies of movement commands to appropriate structures. These signals, known as corollary discharge (CD), enable compensation for sensory consequences of movement and preemptive updating of spatial representations. Such operations occur with a speed and accuracy that implies a reliance on prediction. Here we review recent CD studies and find that they arrive at a shared conclusion: CD contributes to prediction for the sake of sensorimotor harmony.  相似文献   

9.
We present a detailed reanalysis of the comparative brain data for primates, and develop a model using path analysis that seeks to present the coevolution of primate brain (neocortex) and sociality within a broader ecological and life-history framework. We show that body size, basal metabolic rate and life history act as constraints on brain evolution and through this influence the coevolution of neocortex size and group size. However, they do not determine either of these variables, which appear to be locked in a tight coevolutionary system. We show that, within primates, this relationship is specific to the neocortex. Nonetheless, there are important constraints on brain evolution; we use path analysis to show that, in order to evolve a large neocortex, a species must first evolve a large brain to support that neocortex and this in turn requires adjustments in diet (to provide the energy needed) and life history (to allow sufficient time both for brain growth and for 'software' programming). We review a wider literature demonstrating a tight coevolutionary relationship between brain size and sociality in a range of mammalian taxa, but emphasize that the social brain hypothesis is not about the relationship between brain/neocortex size and group size per se; rather, it is about social complexity and we adduce evidence to support this. Finally, we consider the wider issue of how mammalian (and primate) brains evolve in order to localize the social effects.  相似文献   

10.
11.
12.
This report evaluates the performance of a biologically motivated neural network model of the primate superior colliculus (SC). Consistent with known anatomy and physiology, its major features include excitatory connections between its output elements, nigral gating mechanisms, and an eye displacement feedback of reticular origin to recalculate the metrics of saccades to memorized targets in retinotopic coordinates. Despite the fact that it makes no use of eye position or eye velocity information, the model can account for the accuracy of saccades in double step stimulation experiments. Further, the model accounts for the effects of focal SC lesions. Finally, it accounts for the properties of saccades evoked in response to the electrical stimulation of the SC. These include the approximate size constancy of evoked saccades despite increases of stimulus intensity, the fact that the size of evoked saccades depends on the time that has elapsed from a previous saccade, the fact that staircases of saccades are evoked in response to prolonged stimuli, and the fact that the size of saccades evoked in response to the simultaneous stimulation of two SC sites is the average of the saccades that are evoked when the two sites are separately stimulated. Received: 3 November 1997 / Accepted in revised form: 30 June 1998  相似文献   

13.
Studies of the factors affecting reproductive success in group-living monkeys have traditionally focused on competitive traits, like the acquisition of high dominance rank. Recent research, however, indicates that the ability to form cooperative social bonds has an equally strong effect on fitness. Two implications follow. First, strong social bonds make individuals'' fitness interdependent and the ‘free-rider’ problem disappears. Second, individuals must make adaptive choices that balance competition and cooperation—often with the same partners. The proximate mechanisms underlying these behaviours are only just beginning to be understood. Recent results from cognitive and systems neuroscience provide us some evidence that many social and non-social decisions are mediated ultimately by abstract, domain-general neural mechanisms. However, other populations of neurons in the orbitofrontal cortex, striatum, amygdala and parietal cortex specifically encode the type, importance and value of social information. Whether these specialized populations of neurons arise by selection or through developmental plasticity in response to the challenges of social life remains unknown. Many brain areas are homologous and show similar patterns of activity in human and non-human primates. In both groups, cortical activity is modulated by hormones like oxytocin and by the action of certain genes that may affect individual differences in behaviour. Taken together, results suggest that differences in cooperation between the two groups are a matter of degree rather than constituting a fundamental, qualitative distinction.  相似文献   

14.
An analytical model of traumatic diffuse brain injury   总被引:3,自引:0,他引:3  
Diffuse axonal injury (DAI) with prolonged coma has been produced in the primate using an impulsive, rotational acceleration of the head without impact. This pathophysiological entity has been studied subsequently from a biomechanics perspective using physical models of the skull-brain structure. Subjected to identical loading conditions as the primate, these physical models permit one to measure the deformation within the surrogate brain tissue as a function of the forces applied to the head. An analytical model designed to approximate these experiments has been developed in order to facilitate an analysis of the parameters influencing brain deformation. These three models together are directed toward the development of injury tolerance criteria based upon the shear strain magnitude experienced by the deep white matter of the brain. The analytical model geometry consists of a rigid, right-circular cylindrical shell filled with a Kelvin-Voigt viscoelastic material. Allowing no slip on the boundary, the shell is subjected to a sudden, distributed, axisymmetric, rotational load. A Fourier series representation of the load allows unrestricted load-time histories. The exact solution for the relative angular displacement (V) and the infinitesimal shear strain (epsilon) at any radial location in the viscoelastic material with respect to the shell was determined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Success in a constantly changing environment requires that decision-making strategies be updated as reward contingencies change. How this is accomplished by the nervous system has, until recently, remained a profound mystery. New studies coupling economic theory with neurophysiological techniques have revealed the explicit representation of behavioral value. Specifically, when fluid reinforcement is paired with visually-guided eye movements, neurons in parietal cortex, prefrontal cortex, the basal ganglia, and superior colliculus—all nodes in a network linking visual stimulation with the generation of oculomotor behavior—encode the expected value of targets lying within their response fields. Other brain areas have been implicated in the processing of reward-related information in the abstract: midbrain dopaminergic neurons, for instance, signal an error in reward prediction. Still other brain areas link information about reward to the selection and performance of specific actions in order for behavior to adapt to changing environmental exigencies. Neurons in posterior cingulate cortex have been shown to carry signals related to both reward outcomes and oculomotor behavior, suggesting that they participate in updating estimates of orienting value.  相似文献   

16.
Apoptosis has been implicated recently as a prominent response of the brain to a variety of insults, such as ischemia and trauma. In this study, we demonstrate that apoptosis is a prominent part of the brain's response to a thermal insult. To examine the brain's response to a thermal insult, a new model of thermal brain injury in the laboratory rat was developed. Water heated to 60 degrees C was passed over an area of thinned calvarium for 1 min. This resulted in an actual brain temperature of 47-48 degrees C. A uniform area of 2,3,5-triphenyl-tetrazolium chloride pallor was demonstrated and pyknotic neurons were seen in the area of injury by hematoxylin-eosin staining. Apoptosis was demonstrated by the characteristic DNA fragmentation seen by agarose gel electrophoresis, ApopTag in situ staining and electron microscopy. The findings of apoptosis were localized to the area of thermal injury and were time dependent, starting 6 h after the insult and peaking approximately 18 h after the insult. This represents one of the first demonstrations that apoptosis occurs in the brain in response to a thermal injury.  相似文献   

17.
18.
19.
20.
Fluid percussion injury (FPI) is a widely used experimental model for studying traumatic brain injury (TBI). However, little is known about how the brain mechanically responds to fluid impacts and how the mechanical pressures/strains of the brain correlate to subsequent brain damage for rodents during FPI. Hence, we developed a numerical approach to simulate FPI experiments on rats and characterize rat brain pressure/strain responses at a high resolution. A previous rat brain model was improved with a new hexahedral elements-based skull model and a new cerebrospinal fluid (CSF) layer. We validated the numerical model against experimentally measured pressures from FPI. Our results indicated that brain tissues under FPI experienced high pressures, which were slightly lower (10–20%) than input saline pressure. Interestingly, FPI was a mixed focus- and diffuse-type injury model with highest strains (12%) being concentrated in the ipsilateral cortex under the fluid-impact site and diffuse strains (5–10%) being spread to the entire brain, which was different from controlled cortical impact in which high strains decreased gradually away from the impact site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号