首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Proteins and RNA in mouse L cell core nucleoli and nucleolar matrix   总被引:1,自引:0,他引:1  
When intact nucleoli were prepared in the presence of enough leupeptin and phenylmethanesulfonyl fluoride to inhibit protease action, electrophoretic patterns of their constituent proteins were reproducible and very similar for L, HeLa, CHO, and rat hepatoma cells. "Core nucleoli", defined as that nucleolar fraction which remains after extensive DNase I action, had a protein composition similar to that of crude intact nucleoli, but were enriched for snRNA U3. Core nucleolar proteins included all of the histones, ribosomal proteins, and phosphorylated proteins with mobilities corresponding to 110 (protein C23) and 160 kilodaltons (kDa). The presence of protein C23 and of lamins A and C in nucleoli and core nucleoli was further verified by reaction with specific antibodies after one- or two-dimensional electrophoresis. A class of higher molecular weight proteins, ranging from 70 to greater than 200 kDa by mobility, was observed. It included at least 25 specific proteins, almost all of them highly acidic (pI less than 3.5). Treatment of core nucleoli with ethylenediaminetetraacetic acid/hypotonic buffer solubilized 30-35% of the small and large molecular weight proteins. In contrast, washing core nucleoli with 2 M NaCl selectively released U3 snRNA, 95% of the ribosomal RNA, and about half of the proteins, including C23 and most of the histones, ribosomal proteins, and other lower molecular weight proteins. The fraction remaining insoluble, "nucleolar matrix", was enriched for proteins of 34 and 57 kDa, lamins A and C, and most higher molecular weight proteins, as well as a portion of ribosomal spacer DNA.  相似文献   

2.
Structure, function and assembly of the nucleolus   总被引:24,自引:0,他引:24  
  相似文献   

3.
Subcellular distribution of ribosomal proteins S6 and eL12   总被引:1,自引:0,他引:1  
Summary The process of ribosome assembly in eukaryotes was studied by injecting tritium-labeled ribosomal proteins S6 and eL12 into oocytes of Xenopus laevis. The subcellular distribution of the two proteins was visualized by means of autoradiography in sections of oocytes. Protein S6 but not eL12 was found in the nucleus where it accumulated at the nucleoli. In the presence of actinomycin D the accumulation of S6 at the nucleoli was reduced. In-situ immunofluorescence studies indicated that S6 is located at the nucleoli and eL12 exclusively in the cytoplasm. It appears that S6 is involved in the early ribosomal assembly process at the nucleoli, whereas eL12 is restricted to the cytoplasm where it is incorporated into 60S ribosomal subunits in a late assembly step.  相似文献   

4.
As shown previously, ultraviolet (uv) microbeam irradiation of one of the two mature nucleoli within an interphase cell nucleus causes significant diminution and inactivation of the irradiated nucleolus and compensatory growth and activation of the nonirradiated one. In the present work we describe the results of an ultrastructural study of this phenomenon. The changes in the nucleoli were examined by means of complete series of ultrathin sections obtained from seven irradiated pig kidney cells. The compensatory hypertrophy of the nonirradiated nucleoli is shown to be accompanied by a nearly twofold increase in the number of fibrillar centers (FCs) and by a decrease in their linear dimensions compared with the control cells of the same ploidy. In the degraded nucleoli the number of FCs decreases, but their dimensions increase. Ultraviolet microbeam irradiation causes dramatic diminution of the dense fibrillar component within the irradiated nucleoli as well. The nucleolar capacity for compensatory hypertrophy indicates that in addition to active ribosomal genes, mature nucleoli also contain "silent" genes capable of being activated under extreme conditions to sustain the required level of rRNA synthesis. It is assumed that activation of latent ribosomal genes is accompanied by FC "fragmentation" without a considerable increase in their total volume per cell.  相似文献   

5.
Total protein was released from isolated HeLa cell nucleoli by guanidine hydrochloride, purified by cesium chloride density gradient centrifugation, and analyzed by two-dimensional polyacrylamide gel electrophoresis. Conditions of electrophoresis restricted attention to proteins that are positively charged at pH 8.6. Most of the major nucleolar protein spots co-electrophoresed with ribosomal proteins; the majority of ribosomal proteins from both the large and small ribosomal subunits were represented. Several proteins found in association with polysomes but not on ribosomal subunits and several proteins unique to the nucleolus were also identified in these nucleolar protein patterns. In order to determine whether the ribosomal proteins found in the nucleolus represented sizable pools of ribosomal proteins, or merely ribosomal proteins contained in the preribosomal particles, [35S]methionine-labeled nucleoli were mixed with [3H]methionine-labeled polysomes. From analysis of isotopic ratios in individual protein spots it was possible to determine the stoidchiometry of individual ribosomal proteins in the nucleolus relative to their complement on cytoplasmic ribosomes. All but a few proteins exhibited relative nucleolar stoichiometry values of approximately one, indicating that there are not significant pools of most ribosomal proteins in isolated nucleoli.  相似文献   

6.
Structure and function of the nucleolus.   总被引:15,自引:0,他引:15  
The activity of the ribosomal RNA genes generates a distinct subnuclear structure, the nucleolus, which is the site of ribosome biogenesis. The signals that target proteins and snoRNAs (small nucleolar RNAs) to the nucleolus, the nuclear import of ribosomal proteins, the export of the completed ribosomal subunits and the molecular organization of the nucleolus have been the subject of intense research during the past year. Evidence is accumulating that nucleoli functionally interact with coiled bodies and are also involved in the maturation of non-ribosomal RNA species.  相似文献   

7.
8.

Background

Although baker's yeast is a primary model organism for research on eukaryotic ribosome assembly and nucleoli, the list of its proteins that are functionally associated with nucleoli or ribosomes is still incomplete. We trained a naïve Bayesian classifier to predict novel proteins that are associated with yeast nucleoli or ribosomes based on parts lists of nucleoli in model organisms and large-scale protein interaction data sets. Phylogenetic profiling and gene expression analysis were carried out to shed light on evolutionary and regulatory aspects of nucleoli and ribosome assembly.

Results

We predict that, in addition to 439 known proteins, a further 62 yeast proteins are associated with components of the nucleolus or the ribosome. The complete set comprises a large core of archaeal-type proteins, several bacterial-type proteins, but mostly eukaryote-specific inventions. Expression of nucleolar and ribosomal genes tends to be strongly co-regulated compared to other yeast genes.

Conclusion

The number of proteins associated with nucleolar or ribosomal components in yeast is at least 14% higher than known before. The nucleolus probably evolved from an archaeal-type ribosome maturation machinery by recruitment of several bacterial-type and mostly eukaryote-specific factors. Not only expression of ribosomal protein genes, but also expression of genes encoding the 90S processosome, are strongly co-regulated and both regulatory programs are distinct from each other.  相似文献   

9.
10.
11.
12.
Silver staining as an indicator of active ribosomal genes   总被引:1,自引:0,他引:1  
  相似文献   

13.
Silver Staining as an Indicator of Active Ribosomal Genes   总被引:2,自引:0,他引:2  
  相似文献   

14.
15.
The nucleolus, the ribosomal factory of the cell, has emerged as a key player that regulates many aspects of cell biology. Several thousand proteins associate at least transiently with nucleoli, thereby generating a highly dynamic compartment with a protein profile which is sensitive to changes in cell physiology and pharmacological agents. Powerful tools that reliably demarcate the nucleoli are a prerequisite to measure their composition and activities. Previously, we developed quantitative methods to measure fluorescently labeled molecules in nucleoli. While these tools identify nucleoli under control and mild stress conditions, the accurate detection of nucleolar boundaries under harsh experimental conditions is complicated by the lack of appropriate markers for the nucleolar compartment. Using fluorescence microscopy we have now identified new marker proteins to detect nucleoli upon (a) severe stress and (b) drug treatments that trigger a pronounced reorganization of nucleoli. Our results demonstrate that nucleolin is an ideal marker to delimit nucleoli when cells are exposed to heat or oxidative stress. Furthermore, we show for the first time that cellular apoptosis susceptibility protein (CAS) and human antigen R protein (HuR) are excluded from nucleoli and can be employed to delimit these compartments under severe conditions that redistribute major nucleolar proteins. As proof-of-principle, we used these markers to demarcate nucleoli in cells treated with pharmacological compounds that disrupt the nucleolar organization. Furthermore, to gain new insights into the biology of the nucleolus, we applied our protocols and quantified stress- and drug-induced changes in nucleolar organization and function. Finally, we show that CAS, HuR and nucleolin not only identify nucleoli in optical sections, but are also suitable to demarcate the nucleolar border following 3D reconstruction. Taken together, our studies present novel marker proteins that delimit nucleoli with high confidence under a variety of experimental settings.  相似文献   

16.
17.
O V Zatsepina  K Smetana 《Tsitologiia》1985,27(11):1228-1234
The present study was undertaken to provide more information on the ultrastructural localization of a silver reaction in normal resting and stimulated lymphocytes as well as leukaemic resting lymphocytes. The results obtained indicated that in the ring-shaped nucleoli of normal mature lymphocytes silver stained proteins (SSPs) were present mostly within single fibrillar centers. In the nucleoli of lymphocyte cultures, being in the presence of phytohemagglutinin (PHA) for 6--72 hours, SSPs formed finger or loop-like protrusions from fibrillar centers towards the adjacent areas of the nucleoli. In the ring-shaped nucleoli of mature leukaemic lymphocytes SSPs are present not only within fibrillar centers, but also in protrusions diverging from fibrillar centers into the surrounding peripheral nucleolar ring. In this respect the nucleoli of leukaemic mature lymphocytes were similar to normal lymphocytes shortly after mitogen stimulation.  相似文献   

18.
The ribosomal "stalk" structure is a distinct lateral protuberance located on the large ribosomal subunit in prokaryotic, as well as in eukaryotic cells. In eukaryotes, this ribosomal structure is composed of the acidic ribosomal P proteins, forming two hetero-dimers (P1/P2) attached to the ribosome through the P0 protein. The "stalk" is essential for the ribosome activity, taking part in the interaction with elongation factors.In this report, we have shown that the subcellular distribution of the human P proteins does not fall into standard behavior of regular ribosomal proteins. We have used two approaches to assess the distribution of the P proteins, in vivo experiments with GFP fusion proteins and in vitro one with anti-P protein antibodies. In contrast to standard r-proteins, the P1 and P2 proteins are not actively transported into the nucleus compartment, remaining predominantly in the cytoplasm (the perinuclear compartment). The P0 protein was found in the cytoplasm, as well as in the nucleus; however, the nucleoli were excluded. This protein was scattered around the nuclei, and the distribution might reflect association with the so-called nuclear bodies. This is the first example of r-proteins that are not actively transported into the nucleus; moreover, this might imply that the "stalk" constituents are assembled onto the ribosomal particle at the very last step of ribosomal maturation, which takes part in the cell cytoplasm.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号