首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
The denaturation of bovine pancreatic DNAase I (EC 3.1.21.1) by guanidine hydrochloride (GdnHCl) has been investigated with circular dichroism in the presence and absence of 1 mM Ca2+ at the wavelength region of 210-240 nm at 12.25 and 36 degree C. The change of the molar ellipticity at 220 nm by GdnHCl titration showed cooperative transition at each temperature and the midpoints of the titrations occurred near 2 M GdnHCl. At each temperature, the denaturation of DNAase I in the presence of 1 mM Ca2+ occurred a little slowly as compared with that in the absence of Ca2+. This suggests that 1 mM Ca2+ can to some extent stabilize the secondary structure of DNAase I against GdnHCl denaturation. The apparent free energy for the denaturation of DNAase I obtained by GdnHCl titration was calculated as 9.3 +/- 0.3 kcal/mol and 8.9 +/- 0.2 kcal/mol at 25 degree C in the presence and absence of 1 mM Ca2+, respectively. The possible regions for the alpha -helix and beta -structure of DNAase I were predicted from the amino acid sequence by probability calculation of Chou, P.Y. and Fasman, G.D., Adv. Enzymol. 47, 45-148. The characteristic feature is that the NH2-terminal half of DNAase I is rich in beta -structure and the COOH-terminal half contains mainly alpha -helix.  相似文献   

4.
5.
Structure of chromatin containing extensively acetylated H3 and H4   总被引:39,自引:0,他引:39  
R T Simpson 《Cell》1978,13(4):691-699
I have grown HeLa cells in 5 mM sodium n-butyrate leading to extensive in vivo histone acetylation, and have characterized the structure of chromatin containing the modified histones. Nuclear DNA in butyrate-treated cells is digested 5-10 fold more rapidly by DNAase I than the DNA of control cells. Staphylococcal nuclease degrades the two nuclear samples to acid-soluble material with identical rates; this nuclease, however, does excise nucleosomes with extensively acetylated histones from the nucleoprotein chain preferentially. The physical properties of unsheared chromatin and isolated core particles from control and butyrate-treated cells are closely similar, as are the rates of digestion of core particles from the two cell preparations by DNAase I. Determination of the relative susceptibilities of cleavage sites for DNAase I demonstrates that the site 60 bases from the ends of the DNA resistant in control cells, becomes susceptible to the nuclease in core particles containing acetylated histones. Similarly, the 5' terminal phosphate at the end of DNA in core prticles is removed by staphylococcal nuclease 2-3 fold faster in particles containing acetylated histones than in particles from control cells.  相似文献   

6.
7.
C Wu  P M Bingham  K J Livak  R Holmgren  S C Elgin 《Cell》1979,16(4):797-806
When the chromatin of Drosophila is examined by digestion with DNAase I or micrococcal nuclease, no general structural organization above the level of the nucleosome is revealed by the cleavage pattern. In contrast, the DNAase I cleavage pattern of specific regions of the Drosophila chromosome shows discrete bands with sizes ranging from a few kilobase pairs (kb) to more than 20 kb. Visualization of such higher order bands was achieved by the use of the Southern blotting technique. The DNAase I-cleaved fragments were transferred onto a nitrocellulose sheet after size fractionation by gel electrophoresis. Hybridization was then carried out with radioactively labeled cloned fragments of DNA from D. melanogaster. For the five different chromosomal regions examined, each gives a unique pattern of higher order bands on the autoradiogram; the patterns are different for different regions. Restriction enzyme cleavage of the fragments generated indicates that the preferential DNAase I cleavage sites in chromatin are position-specific. The chromosomal regions bounded by preferential DNAase I cleavage sites are referred to as supranucleosomal or higher order domains for purposes of discussion and analysis. The micrococcal nuclease cleavage pattern of chromatin at specific loci was also examined. In the one case studied in detail, this nuclease also cleaves at position-specific sites.  相似文献   

8.
DNA isolated from (a) liver chromatin digested in situ with endogenous Ca2+, Mg2+-dependent endonuclease, (b) prostate chromatin digested in situ with micrococcal nuclease or pancreatic DNAase I, and (c) isolated liver chromatin digested with micrococcal nuclease or pancreatic DNAase I has been analyzed electrophoretically on polyacrylamide gels. The electrophoretic patterns of DNA prepared from chromatin digested in situ with either endogenous endonuclease (liver nuclei) or micrococcal nuclease (prostate nuclei) are virtually identical. Each pattern consists of a series of discrete bands representing multiples of the smallest fragment of DNA 200 +/- 20 base pairs in length. The smallest DNA fragment (monomer) accumulates during prolonged digestion of chromatin in situ until it accounts for nearly all of the DNA on the gel; approx. 20% of the DNA of chromatin is rendered acid soluble during this period. Digestion of liver chromatin in situ in the presence of micrococcal nuclease results initially in the reduction of the size of the monomer from 200 to 170 base pairs of DNA and subsequently results in its conversion to as many as eight smaller fragments. The electrophoretic pattern obtained with DNA prepared from micrococcal nuclease digests of isolated liver chromatin is similar, but not identical, to that obtained with liver chromatin in situ. These preparations are more heterogeneous and contain DNA fragments smaller than 200 base pairs in length. These results suggest that not all of the chromatin isolated from liver nuclei retains its native structure. In contrast to endogenous endonuclease and micrococcal nuclease digests of chromatin, pancreatic DNAase I digests of isolated chromatin and of chromatin in situ consist of an extremely heterogeneous population of DNA fragments which migrates as a continuum on gels. A similar electrophoretic pattern is obtained with purified DNA digested by micrococcal nuclease. The presence of spermine (0.15 mM) and spermidine (0.5 mM) in preparative and incubation buffers decreases the rate of digestion of chromatin by endogenous endonuclease in situ approx. 10-fold, without affecting the size of the resulting DNA fragments. The rates of production of the smallest DNA fragments, monomer, dimer, and trimer, are nearly identical when high molecular weight DNA is present in excess, indicating that all of the chromatin multimers are equally susceptible to endogenous endonuclease. These observations points out the effects of various experimental conditions on the digestion of chromatin by nucleases.  相似文献   

9.
Lens is an organ composed of a layer of epithelial cells and a mass of fibers. During terminal differentiation, epithelial cells from the equatorial region elongate into fibers, nuclei change shape, the chromatin appears much condensed in the last step of differentiation and the DNA breaks down into nucleosomes. The pattern of DNAase activities has been recorded at different chick embryonic stages (11 and 18 days) using polyacrylamide gel electrophoresis with DNA substrate in the gel matrix. Two DNAases (30 and 40 kDa) have been observed in lens epithelia and fibers at both stages. However, the activities of both of the enzymes are augmented in fiber cells. The 30 kDa DNAase requires and Ca2+ and Mg2+ (5-15 mM) to hydrolyze the DNA substrate while the 40 kDa-activity is inhibited by added divalent cations (5-15 mM). The 30 kDa protein is inhibited by Na+ and is probably an endonuclease. Both nuclease activities probably are involved in the cleavage of fiber chromatin into nucleosomes during lens terminal differentiation, but variables such as chromatin configuration, unmasked DNA sequences, presence of cations, and pH gradients probably determine the extent of involvement of each DNAase.  相似文献   

10.
DNAase II has been shown to cleave condensed mouse liver chromatin at 100-bp2 intervals while chromatin in the extended form is cleaved at 200-bp intervals (Altenburger et al., 1976). Evidence is presented here that DNA digestion patterns of a half-nucleosomal periodicity are also obtained upon DNAase II digestion of chicken erythrocyte nuclei and yeast nuclei, both of which differ in their repeat lengths (210 and 165 bp) from mouse liver chromatin. In the digestion of mouse liver nuclei a shift from the 100-bp to the 200-bp cleavage mode takes place when the concentration of monovalent cations present during digestion is decreased below 1 mM. When soluble chromatin prepared by micrococcal nuclease is digested with DNAase II the same type of shift occurs, albeit at higher ionic strength.In order to map the positions of the DNAase II cleavage sites on the DNA relative to the positions of the nucleosome cores, the susceptibility of DNAase II-derived DNA termini to exonuclease III was investigated. In addition, oligonucleosome fractions from HaeIII and micrococcal nuclease digests were end-labelled with polynucleotide kinase and digested with DNAase II under conditions leading to 100 and 200-bp digestion patterns. Analysis of the chain lengths of the resulting radioactively labelled fragments together with the results of the exonuclease assay allow the following conclusions. In the 200-bp digestion mode, DNAase II cleaves exclusively in the internucleosomal linker region. Also in the 100-bp mode cleavage occurs initially in the linker region. Subsequently, DNAase II cleaves at intranucleosomal locations, which are not, however, in the centre of the nucleosome but instead around positions 20 and 125 of the DNA associated with the nucleosome core. At late stages of digestion intranucleosomal cuts predominate and linkers that are still intact are largely resistant to DNAase II due to interactions between adjacent nucleosomes. These findings offer an explanation for the sensitivity of DNAase II to the higher-order structure of chromatin.  相似文献   

11.
The use of DNAase I as a probe of chromatin structure is frequently fraught with problems of irreproducibility. We have recently evaluated this procedure, documented the sources of the problems, and standardized the method for reproducible results (Prentice and Gurley (1983) Biochim. Biophys. Acta 740, 134-144). We have now used this probe to detect differences in chromatin structure between cells blocked (1) in G1 phase by isoleucine deprivation, or (2) in early S phase by sequential use of isoleucine deprivation followed by release into the presence of hydroxyurea. The cells blocked in G1 phase have easily-digestible chromatin, while cells blocked in early S phase have chromatin which is much more resistant to DNAase I. These differences were found to be the result of diffusible factors found in the cytoplasm and nuclei of G1- and S-phase cells, respectively. The G1 cells contained a cytoplasmic factor which modulates the chromatin structure of S-phase nuclei to a more easily digestible state, while cells blocked in S phase contain a nuclear factor which modulates the chromatin structure of G1 nuclei to a state more resistant to digestion. DNAase I is much more sensitive to these cell cycle-specific chromatin changes than is micrococcal nuclease. The results indicate that, under controlled conditions, DNAase I should be a valuable probe for detecting chromatin structural changes associated with cell cycle traverse, differentiation, development, hormone action and chemical toxicity.  相似文献   

12.
13.
N. Ronald Morris 《Cell》1976,8(3):357-363
The structure of chromatin from Aspergillus nidulans was studied using micrococcal nuclease and DNAase I. Limited digestion with micrococcal nuclease revealed a nucleosomal repeat of 154 base pairs for Aspergillus and 198 base pairs for rat liver. With more extensive digestion, both types of chromatin gave a similar quasi-limit product with a prominent fragment at 140 base pairs. The similarity of the two limit digests suggests that the structure of the 140 base pair nucleosome core is conserved. This implies that the difference in nucleosome repeat lengths between Aspergillus and rat liver is caused by a difference in the length of the DNA between two nucleosome cores. Digestion of Aspergillus chromatin with DNAase I produced a pattern of single-stranded fragments at intervals of 10 bases which was similar to that produced from rat liver chromatin.  相似文献   

14.
Previously, we have shown that DNA in a small fraction (2-5%) of SV40 minichromosomes was torsionally strained and could be relaxed by treating minichromosomes with topoisomerase I. This fraction was enriched with endogeneous RNA polymerase II (Luchnik et al., 1982, EMBO J., 1, 1353). Here we show that one and the same fraction of SV40 minichromosomes is hypersensitive to DNAase I and is relaxable by topoisomerase I. Moreover, this fraction completely loses its hypersensitivity to DNAase I upon relaxation. The possibility that this fraction of minichromosomes can be represented by naked DNA is ruled out by the results of studying the kinetics of minichromosome digestion by DNAase I in comparison to digestion of pure SV40 DNA and by measuring the buoyant density of SV40 chromatin in equilibrium CsCl gradient. Our data obtained with SV40 minichromosomes may be relevant to the mechanism responsible for DNAase I hypersensitivity in the loops or domains of cellular chromatin.  相似文献   

15.
Chromatin structure of globin and ovalbumin genes in chicken erythrocyte nuclei has been investigated by means of the "nuclease criterion" (described earlier). In intact nuclei (i.e. in the presence of 3 mM MgCl2) DNase I cleaves chromatin of both genes generating fragments multiple of a double-nucleosome repeat (2N-periodicity). However, in the case of the globin gene, apart from the 2N-periodicity, fragments were observed that are multiple of 100 b.p. and are characteristic for partially unfolded chromatin. This distinction in nuclease cleavage patterns correlates with a higher sensitivity of the globin gene as compared with the inactive ovalbumin gene. At 0.5-0.7 mM MgCl2 the transition from dinucleosomal fragmentation with DNase I and DNase II to fragmentation via a 100 b.p. interval occurs and the difference in digestibility of both genes is dramatically increased. If chromatin has been decondensed by incubation of nuclei in 10 mM Tris-buffer DNase Il generates an usual nucleosomal repeat, and in this ionic conditions one may not observe any difference in nuclease sensitivity of the analyzed genes. The data allow to suggest that the high nuclease sensitivity of potentially active genes can be conditioned by more relaxed arrangement of nucleosomes in higher order chromatin structure.  相似文献   

16.
The use of DNAase I as a probe of chromatin structure is frequently fraught with problems of irreproducibility. We have recently evaluated this procedure, documented the sources of the problems, and standardized the method for reproducible results (Prentice and Gurley (1983) Biochim. Biophys. Acta 740, 134–144). We have now used this probe to detect differences in chromatin structure between cells blocked (1) in G1 phase by isoleucine deprivation, or (2) in early S phase by sequential use of isoleucine deprivation followed by release into the presence of hydroxyurea. The cells blocked in G1 phase have easily-digestible chromatin, while cells blocked in early S phase have chromatin which is much more resistant to DNAase I. These differences were found to be the result of diffusible factors found in the cytoplasm and nuclei of G1- and S-phase cells, respectively. The G1 cells contained a cytoplasmic factor which modulates the chromatin structure of S-phase nuclei to a more easily digestible state, while cells blocked in S phase contain a nuclear factor which modulates the chromatin structure of G1 nuclei to a state more resistant to digestion. DNAase I is much more sensitive to these cell cycle-specific chromatin changes than is micrococcal nuclease. The results indicate that, under controlled conditions, DNAase I should be a valuable probe for detecting chromatin structural changes associated with cell cycle traverse, differentiation, development, hormone action and chemical toxicity.  相似文献   

17.
18.
19.
HeLa cells depleted of polyamines by treatment with alpha-difluoromethylornithine (DFMO), methylglyoxal bis(guanylhydrazone) (MGBG) or a combination of the two, were examined for sensitivity to micrococcal nuclease, DNAase I and DNAase II. The degrees of chromatin accessibility to DNAase I and II appeared enhanced somewhat in all three treatment groups, and the released digestion products differed from those in non-depleted cells. DNA released from MGBG- and DFMO/MGBG-treated cells by DNAase II digestion was enriched 4-7-fold for Mg2+-soluble species relative to controls. DNA released by micrococcal nuclease digestion from all three treatment groups was characterized as consisting of higher-order nucleosomal structure than was DNA released from untreated cells. At least some of the altered chromatin properties were abolished by a brief treatment of cells with polyamines, notably spermine. These studies provide the first demonstration in vivo of altered chromatin structure in cells treated with inhibitors of polyamine biosynthesis.  相似文献   

20.
Mapping of DNAase I sensitive regions on mitotic chromosomes   总被引:8,自引:0,他引:8  
B S Kerem  R Goitein  G Diamond  H Cedar  M Marcus 《Cell》1984,38(2):493-499
We have shown that in fixed mitotic chromosomes from female G. gerbillus cells the inactive X chromosome is distinctly less sensitive to DNAase I than the active X chromosome, as demonstrated by in situ nick translation. These results indicated that the specific chromatin conformation that renders potentially active genes sensitive to DNAase I is maintained in fixed mitotic chromosomes. We increased the sensitivity and accuracy of in situ nick translation using biotinylated dUTP and a specific detection and staining procedure instead of radioactive label and autoradiography and now show that in both human and CHO chromosomes, the DNAase I sensitive and insensitive chromosomal regions form a specific dark and light banding pattern. The DNAase I sensitive dark D-bands usually correspond to the light G-bands, but not all light G-bands are DNAase I sensitive. Identifiable regions of inactive constitutive heterochromatin are in a DNAase I insensitive conformation. Our methodology provides a new and important tool for studying the structural and functional organization of chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号