首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of acylcoenzyme A:cholesterol acyltransferase (ACAT) in CaCo-2 cells was inhibited by the ACAT inhibitor, 58-035. The inhibitory effect of this acylamide was specific for cholesterol esterification catalyzed by ACAT; the rates of triglyceride, phospholipid, and cholesterol synthesis were not inhibited by this agent. Cholesteryl esters were depleted in CaCo-2 cells 24 hr after inhibition of ACAT activity, whereas the unesterified cholesterol content increased by 56% after 96 hr. Moreover, inhibiting ACAT activity with 58-035 resulted in a time-dependent 2.5-fold increase in intracellular triglycerides. This accumulation of triglycerides in CaCo-2 cells was associated with a 37% increase in triglyceride synthesis by 96 hr in the presence of 58-035. Triglyceride-rich lipoprotein secretion (d less than 1.006 g/ml) was not affected by inhibiting ACAT activity for up to 6 hr. However, triglyceride-rich lipoprotein secretion was significantly decreased in CaCo-2 cells that were preincubated with 58-035 for 24 to 96 hr. Lipoproteins of density less than 1.006 g/ml that were isolated from CaCo-2 cells incubated with the ACAT inhibitor were deficient in cholesteryl esters and triglycerides compared to lipoproteins isolated from control cells. The data suggest that triglycerides accumulate in CaCo-2 cells in which ACAT activity has been inhibited by 58-035. This accumulation of triglycerides is associated with a modest increase in triglyceride synthesis and a decrease in triglyceride secretion. Altering intracellular cholesterol pools by regulating ACAT activity in the gut could result in the decrease of triglyceride transport and/or the secretion of triglyceride-rich lipoprotein particles of abnormal composition.  相似文献   

2.
Acyl CoA:cholesterol acyltransferase 1 (ACAT1) and ACAT2 are enzymes responsible for the formation of cholesteryl esters in tissues. While both ACAT1 and ACAT2 are present in the liver and intestine, the cells containing either enzyme within these tissues are distinct, suggesting that ACAT1 and ACAT2 have separate functions. In this study, NBD-cholesterol was used to screen for specific inhibitors of ACAT1 and ACAT2. Incubation of AC29 cells, which do not contain ACAT activity, with NBD-cholesterol showed weak fluorescence when the compound was localized in the membrane. When AC29 cells stably transfected with either ACAT1 or ACAT2 were incubated with NBD-cholesterol, the fluorescent signal localized to the nonpolar core of cytoplasmic lipid droplets was strongly fluorescent and was correlated with two independent measures of ACAT activity. Several compounds were found to have greater inhibitory activity toward ACAT1 than ACAT2, and one compound was identified that specifically inhibits ACAT2. The demonstration of selective inhibition of ACAT1 and ACAT2 provides evidence for uniqueness in structure and function of these two enzymes. To the extent that ACAT2 is confined to hepatocytes and enterocytes, the only two cell types that secrete lipoproteins, selective inhibition of ACAT2 may prove to be most beneficial in the reduction of plasma lipoprotein cholesterol concentrations.  相似文献   

3.
Acyl-CoA:cholesterol O-acyltransferase (EC 2.3.1.26, ACAT) is the major intracellular cholesterol-esterifying activity in vascular tissue and is potentially a key regulator of intracellular cholesterol homeostasis during atherogenesis. We have previously reported inhibition of microsomal ACAT by histidine and sulfhydryl-selective chemical modification reagents and present here a more detailed analysis of the effect of sulfhydryl modification on ACAT activity. This analysis indicated two effects of sulfhydryl modification on ACAT activity. Modification of aortic microsomes with relatively low concentrations of p-mercuribenzoate (PMB) (100-200 microM) identified an inhibitory coenzyme A binding site on ACAT which contains a modifiable sulfhydryl group. This site binds CoA tightly (Ki = 20 microM), and PMB modification prevented subsequent ACAT inhibition by CoA without itself inhibiting enzyme activity. At higher concentrations (1-2 mM), PMB inhibited ACAT activity, indicating the presence of a modifiable sulfhydryl group necessary for cholesterol esterification by ACAT. Modification of both sites by PMB was reversible by thiols, and protection against modification was afforded in both cases by oleoyl-CoA, indicating that these sites may also bind oleoyl-CoA. Thus, at least two sulfhydryl groups influence ACAT activity: one is necessary for cholesterol esterification by ACAT, and one is at or near an inhibitory CoA binding site, which may be occupied at intracellular concentrations of CoA.  相似文献   

4.
Natural product acyl-CoA:cholesterol acyltransferase (ACAT) inhibitor pyripyropene A was synthetically converted to acetylcholinesterase (AChE) inhibitor via heterolitic cleavage of the 2-pyrone ring, followed by gamma-acylation/cyclization with several aroyl chlorides. The 4-pyridyl analogue selectively showed AChE inhibitory activity (IC50 7.9 microM) and no ACAT inhibitory activity IC50 = >1000 microM.  相似文献   

5.
In an effort to develop potent and selective inhibitors toward ACAT2, structure–activity relationship studies were carried out using derivatives based on pyripyropene A (PPPA, 1). We have successfully developed novel PPPA derivatives with a 7-O-substituted benzoyl substituent that significantly exhibit more potent ACAT2 inhibitory activity and higher ACAT2 isozyme selectivity than 1.  相似文献   

6.
Novel hydroxyphenylurea derivatives were synthesized and their inhibitory potency evaluated against acyl-CoA: cholesterol acyltransferase (ACAT). Quantitative structure activity relationship analysis revealed that their ACAT inhibitory activities were controlled by the hydrophobicity of the whole molecule. the substitution pattern of urea moiety, and the existence of carboxylic acid. The derivatives with strong activities inhibited foam cell formations. Moreover, these compounds showed antioxidative effects against low density lipoprotein (LDL), owing to their characteristic 3-lert-butyl-2-hydroxy-5-methoxyphenyl substructure. Based on the mechanism of atherosclerosis generation, this hydroxyphenylurea-type dual inhibitor against both ACAT and LDL oxidation is expected to be a promising drug for atherosclerosis.  相似文献   

7.
The enzymatic activity and sterol substrate specificity of acyl coenzyme A:cholesterol acyltransferase (ACAT) were measured in microsomes of cells from Heliothis zea. Under standard assay conditions, the specific enzymatic activity of ACAT was highest in the intestine followed by the fat body and ovary (380.7, 30.7, 8.3 pmol/min per mg, respectively). The structure of the exogenous sterol used in the ACAT assay affected its rate of esterification. The relative rates of esterification of analogs of cholesterol with various modifications of the side chain were: 24-H greater than 24 alpha-CH3 greater than delta 22 greater than delta 24 greater than 24 alpha-C2H5 greater than 24 beta-CH3, delta 22-24 beta-CH3 and delta 22-24 alpha-C2H5. The number and position of double bonds in the B-ring of the sterol nucleus greatly affected the rate of esterification of sterols by ACAT. The average relative rates of esterification of sterols with differences in their B-rings were: delta 7 much greater than delta 8 greater than delta 0 greater than delta 5 greater than delta 5.7. The presence of a 9,14-cyclopropane group and/or methyl groups at the C-4 and 14 positions prevented significant esterification of such sterols. The formation of cholesteryl and lathosteryl esters was partially inhibited in microsomes from the intestine, fat body, and ovary by the addition of the ACAT inhibitor, 3-(decyldimethylsilyl)-N-[2-(4-methylphenyl)-1-phenylethyl]prop anamide (Sandoz Compound 58-035).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
THP-1 cell-derived foam cells were exposed to oxidative stress through combined treatment with acetylated LDL (acLDL) and copper ions (Cu2+). The foam cells showed caspase-dependent apoptotic changes on exposure to oxidative stress for 6 h, and necrotic changes with the leakage of LDH after 24 h. KY-455, an anti-oxidative ACAT inhibitor, and ascorbic acid (VC) but not YM-750, an ACAT inhibitor, prevented apoptotic and necrotic changes. These preventive effects of KY-455 and VC were accompanied by the inhibition of lipid peroxidation in culture medium containing acLDL and Cu2+, suggesting the involvement of oxidized acLDL in apoptosis and necrosis. Foam cells accumulated esterified cholesterol (EC) for 24 h in the presence of acLDL without Cu2+, which was suppressed by KY-455 and YM-750. Foam cells showed necrotic changes and died in the presence of acLDL and Cu2+. KY-455 but not YM-750 prevented cell death and reduced the amount of EC accumulated. The foam cells treated with VC further accumulated EC without necrotic changes for 24 h even in the presence of acLDL and Cu2+. YM-750 as well as KY-455 inhibited lipid accumulation when co-incubated with VC in foam cells exposed to oxidative stress. It is concluded that an anti-oxidative ACAT inhibitor or the combination of an antioxidant and an ACAT inhibitor protects foam cells from oxidative stress and effectively reduces cholesterol levels, which would be a promising approach in anti-atherosclerotic therapy.  相似文献   

9.
10.
11.
12.
The citrus flavonoids, naringenin and hesperetin, lower plasma cholesterol in vivo. However, the underlying mechanisms are not fully understood. The ability of these flavonoids to modulate apolipoprotein B (apoB) secretion and cellular cholesterol homeostasis was determined in the human hepatoma cell line, HepG2. apoB accumulation in the media decreased in a dose-dependent manner following 24-h incubations with naringenin (up to 82%, P < 0.00001) or hesperetin (up to 74%, P < 0.002). Decreased apoB secretion was associated with reduced cellular cholesteryl ester mass. Cholesterol esterification was decreased, dose-dependently, up to 84% (P < 0.0001) at flavonoid concentrations of 200 microM. Neither flavonoid demonstrated selective inhibition of either form of acyl CoA:cholesterol acyltransferase (ACAT) as determined using CHO cells stably transfected with either ACAT1 or ACAT2. However, in HepG2 cells, ACAT2 mRNA was selectively decreased (- 50%, P < 0.001) by both flavonoids, whereas ACAT1 mRNA was unaffected. In addition, naringenin and hesperetin decreased both the activity (- 20% to - 40%, P < 0.00004) and expression (- 30% to - 40%, P < 0.02) of microsomal triglyceride transfer protein (MTP). Both flavonoids caused a 5- to 7-fold increase (P < 0.02) in low density lipoprotein (LDL) receptor mRNA, which resulted in a 1.5- to 2-fold increase in uptake and degradation of (125)I-LDL. We conclude that both naringenin and hesperetin decrease the availability of lipids for assembly of apoB-containing lipoproteins, an effect mediated by 1) reduced activities of ACAT1 and ACAT2, 2) a selective decrease in ACAT2 expression, and 3) reduced MTP activity. Together with an enhanced expression of the LDL receptor, these mechanisms may explain the hypocholesterolemic properties of the citrus flavonoids.  相似文献   

13.
14.
Ginseng sapogenins were produced from ginseng saponins, isolated from Korean ginseng roots. Ginseng saponins very mildly inhibited acyl-CoA:cholesterol acyltransferase (ACAT) in vitro, however, the sapogenins showed strong inhibitory activity on microsomal ACAT. Therefore, the sapogenins will be one of key ingredients of ginseng affected a lowering of the serum total cholesterol level.  相似文献   

15.
Roles of acyl-coenzyme A:cholesterol acyltransferase-1 and -2   总被引:12,自引:0,他引:12  
Acyl-coenzyme A:cholesterol acyltransferase (ACAT) is an intracellular enzyme that produces cholesteryl esters in various tissues. In mammals, two ACAT genes (ACAT1 and ACAT2) have been identified. Together, these two enzymes are involved in storing cholesteryl esters as lipid droplets, in macrophage foam-cell formation, in absorbing dietary cholesterol, and in supplying cholesteryl esters as part of the core lipid for lipoprotein synthesis and assembly. The key difference in tissue distribution of ACAT1 and ACAT2 between humans, mice and monkeys is that, in adult human liver (including hepatocytes and bile duct cells), the major enzyme is ACAT1, rather than ACAT2. There is compelling evidence implicating a role for ACAT1 in macrophage foam-cell formation, and for ACAT2 in intestinal cholesterol absorption. However, further studies at the biochemical and cell biological levels are needed in order to clarify the functional roles of ACAT1 and ACAT2 in the VLDL or chylomicron synthesis/assembly process.  相似文献   

16.
Targeted deletion of acyl-CoA:cholesterol acyltransferase 2 (ACAT2) (A2), especially in the liver, protects hyperlipidemic mice from diet-induced hypercholesterolemia and atherosclerosis, whereas the deletion of ACAT1 (A1) is not as effective, suggesting ACAT2 may be the more appropriate target for treatment of atherosclerosis. Among the numerous ACAT inhibitors known, pyripyropene A (PPPA) is the only compound that has high selectivity (>2000-fold) for inhibition of ACAT2 compared with ACAT1. In the present study we sought to determine the PPPA interaction site of ACAT2. To achieve this goal we made several chimeric proteins where parts of ACAT2 were replaced by the analogous region of ACAT1. Differences in the amino acid sequence and the membrane topology were utilized to design the chimeras. Among chimeras, A2:1-428/A1:444-550 had 50% reduced PPPA selectivity, whereas C-terminal-truncated ACAT2 mutant A2:1-504 (C-terminal last 22 amino acids were deleted) remained selectively inhibited, indicating the PPPA-sensitive site is located within a region between amino acids 440 and 504. Three additional chimeras within this region helped narrow down the PPPA-sensitive site to a region containing amino acids 480-504, representing the fifth putative transmembrane domain of ACAT2. Subsequently, for this region we made single amino acid mutants where each amino acid in ACAT2 was individually changed to its ACAT1 counterpart. Mutation of Q492L, V493L, S494A resulted in only 30, 50, and 70% inhibition of the activity by PPPA, respectively (as opposed to greater than 95% with the wild type enzyme), suggesting these three residues are responsible for the selective inhibition by PPPA of ACAT2. Additionally, we found that PPPA non-covalently interacts with ACAT2 apparently without altering the oligomeric structure of the protein. The present study provides the first evidence for a unique motif in ACAT2 that can be utilized for making an ACAT2-specific drug.  相似文献   

17.
18.
Acyl-CoA:cholesterol acyltransferase (ACAT) is a membrane-bound enzyme that produces cholesteryl esters intracellularly. Two ACAT genes (ACAT1 and ACAT2) have been identified. The expression of ACAT1 is ubiquitous, whereas that of ACAT2 is tissue restricted. Previous research indicates that ACAT1 may contain seven transmembrane domains (TMDs). To study ACAT2 topology, we inserted two different antigenic tags (hemagglutinin, monoclonal antibody Mab1) at various hydrophilic regions flanking each of its predicted TMDs, and expressed the recombinant proteins in mutant Chinese hamster ovary cells lacking endogenous ACAT. Each tagged ACAT2 was expressed in the endoplasmic reticulum as a single undegraded protein band and was at least partially active enzymatically. We then used cytoimmunofluorescence and protease protection assays to monitor the sidedness of the hemagglutinin and Mab1 tags along the ER membranes. The results indicated that ACAT2 contains only two detectable TMDs, located near the N terminal region. We also show that a conserved serine (S245), a candidate active site residue, is not essential for ACAT catalysis. Instead, a conserved histidine (H434) present within a hydrophobic peptide segment, may be essential for ACAT catalysis. H434 may be located at the cytoplasmic side of the membrane.  相似文献   

19.
In this report, we sought to determine the putative active site residues of ACAT enzymes. For experimental purposes, a particular region of the C-terminal end of the ACAT protein was selected as the putative active site domain due to its high degree of sequence conservation from yeast to humans. Because ACAT enzymes have an intrinsic thioesterase activity, we hypothesized that by analogy with the thioesterase domain of fatty acid synthase, the active site of ACAT enzymes may comprise a catalytic triad of ser-his-asp (S-H-D) amino acid residues. Mutagenesis studies revealed that in ACAT1, S456, H460, and D400 were essential for activity. In ACAT2, H438 was required for enzymatic activity. However, mutation of D378 destabilized the enzyme. Surprisingly, we were unable to identify any S mutations of ACAT2 that abolished catalytic activity. Moreover, ACAT2 was insensitive to serine-modifying reagents, whereas ACAT1 was not. Further studies indicated that tyrosine residues may be important for ACAT activity. Mutational analysis showed that the tyrosine residue of the highly conserved FYXDWWN motif was important for ACAT activity. Furthermore, Y518 was necessary for ACAT1 activity, whereas the analogous residue in ACAT2, Y496, was not. The available data suggest that the amino acid requirement for ACAT activity may be different for the two ACAT isozymes.  相似文献   

20.
The capacity of acyl-CoA:cholesterol O-acyltransferase (ACAT) 2 to differentiate cholesterol from the plant sterol, sitosterol, was compared with that of the sterol esterifying enzymes, ACAT1 and lecithin:cholesterol acyltransferase (LCAT). Cholesterol-loaded microsomes from transfected cells containing either ACAT1 or ACAT2 exhibited significantly more ACAT activity than their sitosterol-loaded counterparts. In sitosterol-loaded microsomes, both ACAT1 and ACAT2 were able to esterify sitosterol albeit with lower efficiencies than cholesterol. The mass ratios of cholesterol ester to sitosterol ester formed by ACAT1 and ACAT2 were 1.6 and 7.2, respectively. Compared with ACAT1, ACAT2 selectively esterified cholesterol even when sitosterol was loaded into the microsomes. To further characterize the difference in sterol specificity, ACAT1 and ACAT2 were compared in intact cells loaded with either cholesterol or sitosterol. Despite a lower level of ACAT activity, the ACAT1-expressing cells esterified 4-fold more sitosterol than the ACAT2 cells. The data showed that compared with ACAT1, ACAT2 displayed significantly greater selectively for cholesterol compared with sitosterol. The plasma cholesterol esterification enzyme lecithin:cholesterol acyltransferase was also compared. With recombinant high density lipoprotein particles, the esterification rate of cholesterol by LCAT was only 15% greater than for sitosterol. Thus, LCAT was able to efficiently esterify both cholesterol and sitosterol. In contrast, ACAT2 demonstrated a strong preference for cholesterol rather than sitosterol. This sterol selectivity by ACAT2 may reflect a role in the sorting of dietary sterols during their absorption by the intestine in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号