首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to test hypotheses about the phylogenetic relationships among living genera of New World monkeys, 1.3 kb of DNA sequence information was collected for two introns of the glucose-6-phosphate dehydrogenase (G6PD) locus, encoded on the X chromosome, for 24 species of New World monkeys. These data were analyzed using a maximum parsimony algorithm. The strict consensus of the three most-parsimonious gene trees that result shows support for the following clades: a pitheciine clade including Callicebus within which Chiropotes and Cacajao are sister taxa, an Alouatta-atelin clade within which Brachyteles is the sister taxon of Lagothrix and which is sister to another clade containing the callitrichines, and a callitrichine/Aotus/Cebus/Saimiri clade. Within the callitrichines, Callimico is the sister taxon of Callithrix. Cebus and Saimiri form a clade. These results are broadly consistent with previously published DNA sequence analyses of platyrrhine phylogeny and provide additional support for groupings provisionally proposed in those earlier studies. Nevertheless, questions remain as to the relative phylogenetic placement of Leontopithecus and Saguinus, the branching order within the Aotus/Cebus/Saimiri/callitrichine clade, and the placement of the pitheciine clade relative to the atelines and the callitrichines.  相似文献   

2.
Morphological and molecular studies have inferred multiple hypotheses for the phylogenetic relationships of Testudines. The hypothesis that Testudines are the only extant anapsid amniotes and the sister taxon of diapsid amniotes is corroborated by morphological studies, while the hypothesis that Testudines are diapsid amniotes is corroborated by more recent molecular and morphological studies. In this study, the placement of Testudines is tested using the full length cDNA sequence of the polypeptide hormone precursor proopiomelanocortin (POMC). Because only extant taxa have been used, the hypotheses being tested are limited to the following (1) Testudines as the sister taxon of Archosauria, (2) Testudines included in Archosauria and the sister taxon of Crocodilia, (3) Testudines as the sister taxon of Lepidosauria, (4) Testudines as the sister taxon of Sauria, and (5) Testudines as the sister taxon of a monophyletic Mammalia–Sauria clade. Neither Maximum likelihood, Bayesian, or maximum parsimony analyses are able to falsify the hypothesis of (Archosauria (Lepidosauria, Testudines)) and as such is the preferred inference from the POMC data.  相似文献   

3.
An hypothesis of phylogenetic relationships of Asilidae and its constituent taxa is presented, combining morphological and DNA sequence data in a total evidence framework. It is based on 77 robber fly species, 11 Asiloidea outgroup species, 211 morphological characters of the adult fly, and approximately 7300 bp of nuclear DNA from five genes (18S and 28S rDNA, AATS, CAD, and EF-1α protein-encoding DNA). The equally weighted, simultaneous parsimony analysis under dynamic homology in POY resulted in a single most parsimonious cladogram with a cost of 27,582 (iterative pass optimization; 27,703 under regular direct optimization). Six of the 12 included subfamily taxa are recovered as monophyletic. Trigonomiminae, previously always considered as monophyletic based on morphology, is shown to be non-monophyletic. Two of the three Trigonomiminae genera, Holcocephala Jaennicke, 1867 and Rhipidocephala Hermann, 1926, group unexpectedly as the sister taxon to all other Asilidae. Laphriinae, previously seen in the latter position, is the sister group of the remaining Asilidae. Five other subfamily taxa, i.e. Brachyrhopalinae, Dasypogoninae, Stenopogoninae, Tillobromatinae, and Willistonininae, are also shown to be non-monophyletic. The phylogenetic relationships among the higher-level taxa are partly at odds with findings of a recently published morphological study based on more extensive taxon sampling. The total evidence hypothesis is considered as the most informative one, but the respective topologies from the total-evidence, morphology-only, and molecular-only analyses are compared and contrasted in order to discuss the signals from morphological versus molecular data, and to analyze whether the molecular data outcompete the fewer morphological characters. A clade Apioceridae+Mydidae is corroborated as the sister taxon to Asilidae.  相似文献   

4.
There is general agreement that the hominoid primates form a monophyletic group, that the extant great apes and humans form a second clade within that group with the gibbons as the sister group, and that the African apes and humans form a third clade. Although it has recently been proposed that humans and orang utans are sister taxa and also that the great apes form a clade to the exclusion of humans, our analysis, particularly of the molecular evidence, supports the existence of an African ape and human clade. The major problem in hominoid phylogeny at present is the relationships of the species within this clade: morphological data generally support the existence of an African ape clade which is the sister group to humans; some molecular data also support this conclusion, but most molecular evidence indicates the existence of a chimpanzee/human clade. We have cladistically re-analysed the DNA and protein sequence data for which apomorphic character states can be assessed. It is clear that there is a high degree of homoplasy whichever branching pattern is produced, with some characters supporting the existence of a chimpanzee/human clade and others supporting an African ape clade. When the cladistic analyses of morphological and molecular data are combined we believe that the most parsimonious interpretation of the data is that the African apes form a clade which is the sister taxon of the human (i.e., Australopithecus, Homo and Paranthropus) clade.This paper is not intended as a survey of all hominoid fossils but as a study of branching points in hominoid evolution and fossils are included which are relevant to this branching pattern. The analysis of fossil taxa in this study leads us to conclude that Proconsul is the sister taxon to the later Hominoidea. A number of middle Miocene forms such as Dryopithecus, Kenyapithecus, Heliopithecus and Afropithecus are shown to share derived characters with great apes and humans and provide evidence for the divergence of that clade from the gibbon lineage prior to 18 Ma. The position that Sivapithecus represents the sister group of the orang utan clade is supported here and shows that the orang utan lineage had diverged from the African ape and human lineage prior to 11·5 Ma. There is unfortunately no definitive fossil cvidence on branching sequences within the African ape and human clade, although a new specimen from Samburu, Kenya may be related to the gorilla.  相似文献   

5.
Campbell J  Shearer CA 《Mycologia》2004,96(4):822-833
Two pyrenomycetes in the Annulatascaceae described from freshwater, Annulatascus triseptatus and Ascolacicola austriaca, are reported from North and South America for the first time. Both species occur commonly on submerged wood in the U.S.A. The two taxa are similar morphologically in having black coriaceous ascomata, cylindrical necks, septate paraphyses, cylindrical pedicellate asci with prominent apical rings and three-septate ascospores. Molecular data demonstrates that Annulatascus is polyphyletic, with A. triseptatus on a clade widely separated from the type species of the genus, A. velatisporus. Ascolacicola austriaca is on a monophyletic clade within the Annulatascaceae as sister taxon of A. triseptatus. Based on morphological data and phylogenetic analyses of 28S rDNA sequence data, new genera Annulusmagnus and Ascitendus are established for Annulatascus triseptatus and Ascolacicola austriaca, respectively.  相似文献   

6.
Using characters from mitochondrial DNA to construct maximum parsimony and maximum likelihood trees, we performed a phylogenetic analysis on representative species of 14 genera: 12 that belong to the treefrog family Rhacophoridae and two, Amolops and Rana, that are not rhacophorids. Our results support a phylogenetic hypothesis that depicts a monophyletic family Rhacophoridae. In this family, the Malagasy genera Aglyptodactylus, Boophis, Mantella, and Mantidactylus form a well-supported sister clade to all other rhacophorid genera, and Mantella is the sister taxon to Mantidactylus. Within the Asian/African genera, the genus Buergeria forms a well-supported clade of four species. The genera, except for Chirixalus, are generally monophyletic. An exception to this is that Polypedates dennysii clusters with species of Rhacophorus, suggesting that the taxonomy of the rhacophorids should be revised to reflect this relationship. Chirixalus is not monophyletic. Unexpectedly, there is strong support for Chirixalus doriae from Southeast Asia forming a clade with species of the African genus Chiromantis, suggesting that Chiromantis dispersed to Africa from Asia. Also, there is strong support for the sister taxon relationship of Chirixalus eiffingeri and Chirixalus idiootocus apart from other congeners.  相似文献   

7.
A phylogeny of all eight recognized taxa of the genus Thunnus was constructed from approximately 400 base pairs of sequence of the mitochondrial DNA (mtDNA) control region. The PCR-amplified control region I segment studied contained a total of 186 variable sites and 159 phylogenetically informative sites. Diagnostic sequences for every taxon were identified. Neighbour-joining phylogenies supported monophyletic origins of the temperate subgenus Thunnus and of the tropical subgenus Neothunnus . Similar results were obtained by maximum parsimony analyses except that there was no support for a monophyletic origin of the subgenus Thunnus . Bigeye tuna, which have been difficult to place in either subgenus using conventional morphological data, was identified as the sister species of Neothunnus . Within the subgenus Thunnus , the Atlantic bluefin and Southern bluefin tunas were shown to be sister taxa of the highly divergent monophyletic clade formed by the Pacific northern bluefin and the Albacore tunas. The conspecific Atlantic ( T. thynnus thynnus ) and Pacific ( T. t. orientalis ) northern bluefin tunas were more divergent (Tamura-Nei distance 0·145 ± 0·019) from each other than the average distance separating most species-pairs within the genus. Thus, a re-examination of their status as subspecies of T. thunnus is warranted.  相似文献   

8.
Knowledge of the phylogenetic position of the order Cetacea (whales, dolphins, and porpoises) within Mammalia is of central importance to evolutionary biologists studying the transformations of biological form and function that accompanied the shift from fully terrestrial to fully aquatic life in this clade. Phylogenies based on molecular data and those based on morphological data both place cetaceans among ungulates but are incongruent in other respects. Morphologists argue that cetaceans are most closely related to mesonychians, an extinct group of terrestrial ungulates. They have disagreed, however, as to whether Perissodactyla (odd-toed ungulates) or Artiodactyla (even-toed ungulates) is the extant clade most closely related to Cetacea, and have long maintained that each of these orders is monophyletic. The great majority of molecule-based phylogenies show, by contrast, not only that artiodactyls are the closest extant relatives of Cetacea, but also that Artiodactyla is paraphyletic unless cetaceans are nested within it, often as the sister group of hippopotamids. We tested morphological evidence for several hypotheses concerning the sister taxon relationships of Cetacea in a maximum parsimony analysis of 123 morphological characters from 10 extant and 30 extinct taxa. We advocate treating certain multistate characters as ordered because such a procedure incorporates information about hierarchical morphological transformation. In all most-parsimonious trees, whether multistate characters are ordered or unordered, Artiodactyla is the extant sister taxon of Cetacea. With certain multistate characters ordered, the extinct clade Mesonychia (Mesonychidae + Hapalodectidae) is the sister taxon of Cetacea, and Artiodactyla is monophyletic. When all fossils are removed from the analysis, Artiodactyla is paraphyletic with Cetacea nested inside, indicating that inclusion of mesonychians and other extinct stem taxa in a phylogenetic analysis of the ungulate clade is integral to the recovery of artiodactyl monophyly. Phylogenies derived from molecular data alone may risk recovering inconsistent branches because of an inability to sample extinct clades, which by a conservative estimate, amount to 89% of the ingroup. Addition of data from recently described astragali attributed to cetaceans does not overturn artiodactyl monophyly.  相似文献   

9.
Complete coding regions of the 18S rRNA gene of an enteropneust hemichordate and an echinoid and ophiuroid echinoderm were obtained and aligned with 18S rRNA gene sequences of all major chordate clades and four outgroups. Gene sequences were analyzed to test morphological character phylogenies and to assess the strength of the signal. Maximum- parsimony analysis of the sequences fails to support a monophyletic Chordata; the urochordates form the sister taxon to the hemichordates, and together this clade plus the echinoderms forms the sister taxon to the cephalochordates plus craniates. Decay, bootstrap, and tree-length distribution analyses suggest that the signal for inference of dueterostome phylogeny is weak in this molecule. Parsimony analysis of morphological plus molecular characters supports both monophyly of echinoderms plus enteropneust hemichordates and a sister group relationship of this clade to chordates. Evolutionary parsimony does not support chordate monophyly. Neighbor-joining, Fitch-Margoliash, and maximum-likelihood analyses support a chordate lineage that is the sister group to an echinoderm-plus-hemichordate lineage. The results illustrate both the limitations of the 18S rRNA molecule alone for high- level phylogeny inference and the importance of considering both molecular and morphological data in phylogeny reconstruction.   相似文献   

10.
The evolution of the ‘therevoid’ clade, with an emphasis on window flies (Scenopinidae), is presented by combining DNA sequence data with morphological characters for living and fossil species. The therevoid clade represents a group of four families (Apsilocephalidae, Evocoidae, Scenopinidae and Therevidae) of lower brachyceran Diptera in the superfamily Asiloidea. A comprehensive phylogenetic analysis using parsimony and likelihood methods was undertaken using extensive taxon sampling from all families and subfamilies, and compared with outgroup taxa sampled from the related families Asilidae, Mydidae, Apioceridae and Empididae. Fifty‐nine morphological characters (adult, larval and pupal) were combined with 6.4 kb of DNA sequences for two ribosomal genes (16S and 18S ribosomal DNA) and three protein‐encoding genes [cytochrome oxidase I (COI), triose phosphate isomerase (TPI) and the CPSase region of carbamoyl‐phosphate synthase‐aspartate transcarbamoylase‐dihydroorotase (CAD)]. Results from combined analyses of morphological and molecular data for 78 taxa representing all families of the therevoid clade are presented. Specific hypotheses of the relationship between respective families and subfamilies were tested statistically using four‐cluster likelihood mapping. The therevoid clade is a well‐supported monophyletic group within Asiloidea, with Evocoidae sister to Apsilocephalidae and Therevidae sister to Scenopinidae. Temporal and zoogeographical aspects of therevoid clade evolution were investigated using Bayesian divergence time estimates and Lagrange ancestral range scenarios. The effect of inclusion of fossils as terminal taxa on phylogenetic and divergence time estimation was investigated, with morphological scoring for fossil representatives included in the analyses rather than used simply as minimum age constraints. In each analysis there was either improvement in estimation, or only marginal and localized loss in tree resolution, and with younger estimates of divergence time across the tree. The historical biogeography of the therevoid clade was examined with multiple trans‐Antarctic vicariance events between Australasia and South America evident during the Late Cretaceous to early Palaeogene. Scenopininae is newly subdivided into two tribes, Metatrichini trib.n. and Scenopinini Fallén stat.r. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:4974EBF8‐3117‐4189‐B6DE‐7D5BF9B23E53 .  相似文献   

11.
The systematics and taxonomy of early Eocene equids are investigated. A paraphyletic sequence of equid taxa is recovered from a phylogenetic analysis of 40 taxa and 121 characters. This analysis supports the identification of Hyracotherium as a primitive equoid and its restriction to the genotype, Hyracotherium leporinum . Sifrhippus gen. nov. is erected for the sister taxon of all other equids, Hyracotherium sandrae Gingerich. Minippus gen. nov., the next more-derived equid clade, is erected for two small equids, M. index Cope and M. jicarillai nov. species. Arenahippus gen. nov. is erected for the next three sequentially more-derived equid taxa, A. grangeri Kitts, A. aemulor Gingerich, and A. pernix Marsh. The genus Xenicohippus , which is the next more-derived equid clade, is redefined to include X. craspedotum Cope. Eohippus Marsh, the next more-derived equid taxon, is resurrected for E. angustidens Cope. Pliolophus , the only early Eocene equid from Europe, is identified as the sister taxon to Protorohippus , a sequence of successively more-derived equid taxa consisting of P. montanum Wortman and P. venticolum Cope. Protorohippus venticolum is identified as the sister taxon of Orohippus . Systemodon Cope is resurrected for S. tapirinum Cope. This taxon has historically been placed within Hyracotherium yet this analysis allies it with Cymbalophus near the base of the perissodactyl radiation. © 2002 The Linnean Society of London. Zoological Journal of the Linnean Society , 134 , 141–256.  相似文献   

12.
Despite several recent studies, the phylogeny of plethodontid salamanders is not yet fully resolved and the phylogenetic positions of several key genera, especially Aneides, Hemidactylium, Hydromantes and Karsenia, are contentious. Here we present a combined dataset of complete mitochondrial genomes and three nuclear loci for 20 species (16 genera) of plethodontids, representing all major clades in the family. The combined dataset without mitochondrial third codon positions provides a fully resolved, statistically well-supported tree. In this topology two major clades are recovered. A northern clade includes Aneides, Desmognathus, Ensatina, Hydromantes, Karsenia, Phaeognathus and Plethodon, with Plethodon being the sister taxon to the rest of the clade. Hydromantes and Karsenia are sister taxa, and Aneides is recovered as the sister taxon to Ensatina. Desmognathus+Phaeognathus form the sister taxon to Aneides+Ensatina. An eastern/southern clade comprises two subclades. One subclade, the spelerpines (Eurycea, Gyrinophilus, Pseudotriton, Stereochilus, Urspelerpes) is the sister taxon to a subclade comprising Hemidactylium, Batrachoseps and the tropical plethodontids (represented by Bolitoglossa, Nototriton and Thorius). In this topology Hemidactylium is well-supported as the sister taxon to Batrachoseps. Only when mitochondrial third codon positions are included using maximum likelihood analysis is Hemidactylium recovered as the sister taxon to Batrachoseps+tropical genera. Hypothesis testing of alternative topologies supports these conclusions. On the basis of these results we propose a conservative taxonomy for Plethodontidae.  相似文献   

13.
The bee-eaters (family Meropidae) comprise a group of brightly colored, but morphologically homogeneous, birds with a wide variety of life history characteristics. A phylogeny of bee-eaters was reconstructed using nuclear and mitochondrial DNA sequence data from 23 of the 25 named bee-eater species. Analysis of the combined data set provided a well-supported phylogenetic hypothesis for the family. Nyctiornis is the sister taxon to all other bee-eaters. Within the genus Merops, we recovered two well-supported clades that can be broadly separated into two groups along geographic and ecological lines, one clade with mostly African resident species and the other clade containing a mixture of African and Asian taxa that are mostly migratory species. The clade containing resident African species can be further split into two groups along ecological lines by habitat preference into lowland forest specialists and montane forest and forest edge species. Intraspecific sampling in several of the taxa revealed moderate to high (3.7-6.5%, ND2) levels of divergence in the resident taxa, whereas the lone migratory taxon showed negligible levels of intraspecific divergence. This robust molecular phylogeny provides the phylogenetic framework for future comparative tests of hypotheses about the evolution of plumage patterns, sociality, migration, and delayed breeding strategies.  相似文献   

14.
Cyatta abscondita, a new genus and species of fungus-farming ant from Brazil, is described based on morphological study of more than 20 workers, two dealate gynes, one male, and two larvae. Ecological field data are summarized, including natural history, nest architecture, and foraging behavior. Phylogenetic analyses of DNA sequence data from four nuclear genes indicate that Cyatta abscondita is the distant sister taxon of the genus Kalathomyrmex, and that together they comprise the sister group of the remaining neoattine ants, an informal clade that includes the conspicuous and well-known leaf-cutter ants. Morphologically, Cyatta abscondita shares very few obvious character states with Kalathomyrmex. It does, however, possess a number of striking morphological features unique within the fungus-farming tribe Attini. It also shares morphological character states with taxa that span the ancestral node of the Attini. The morphology, behavior, and other biological characters of Cyatta abscondita are potentially informative about plesiomorphic character states within the fungus-farming ants and about the early evolution of ant agriculture.  相似文献   

15.
A recent molecular analysis strongly supported sister group relationship between flamingos (Phoenicopteridae) and grebes (Podicipedidae), a hypothesis which has not been suggested before. Flamingos are long-legged filter-feeders whereas grebes are morphologically quite divergent foot-propelled diving birds, and sister group relationship between these two taxa would thus provide an interesting example of evolution of different feeding strategies in birds. To test monophyly of a clade including grebes and flamingos, I performed a cladistic analysis of 70 morphological characters which were scored for 17 taxa. Parsimony analysis of these data supported monophyly of the taxon (Podicipedidae + Phoenicopteridae) and the clade received high bootstrap support. Previously overlooked morphological, oological and parasitological evidence is recorded which supports this hypothesis, and which makes the taxon (Podicipedidae + Phoenicopteridae) one of the best supported higher-level clades within modern birds. The phylogenetic significance of some fossil flamingo-like birds is discussed. The Middle Eocene taxon Juncitarsus is most likely the sister taxon of the clade (Podicipedidae + (Palaelodidae + Phoenicopteridae)) although resolution of its exact systematic position awaits revision of the fossil material. Contrary to previous assumptions, it is more parsimonious to assume that flamingos evolved from a highly aquatic ancestor than from a shorebird-like ancestor.  © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 140 , 157–169.  相似文献   

16.
Consensus is elusive regarding the phylogenetic relationships among neornithine (crown clade) birds. The ongoing debate over their deep divergences is despite recent increases in available molecular sequence data and the publication of several larger morphological data sets. In the present study, the phylogenetic relationships among 43 neornithine higher taxa are addressed using a data set of 148 osteological and soft tissue characters, which is one of the largest to date. The Mesozoic non‐neornithine birds Apsaravis, Hesperornis, and Ichthyornis are used as outgroup taxa for this analysis. Thus, for the first time, a broad array of morphological characters (including both cranial and postcranial characters) are analyzed for an ingroup densely sampling Neornithes, with crown clade outgroups used to polarize these characters. The strict consensus cladogram of two most parsimonious trees resultant from 1000 replicate heuristic searches (random stepwise addition, tree‐bisection‐reconnection) recovered several previously identified clades; the at‐one‐time contentious clades Galloanseres (waterfowl, fowl, and allies) and Palaeognathae were supported. Most notably, our analysis recovered monophyly of Neoaves, i.e., all neognathous birds to the exclusion of the Galloanseres, although this clade was weakly supported. The recently proposed sister taxon relationship between Steatornithidae (oilbird) and Trogonidae (trogons) was recovered. The traditional taxon “Falconiformes” (Cathartidae, Sagittariidae, Accipitridae, and Falconidae) was not found to be monophyletic, as Strigiformes (owls) are placed as the sister taxon of (Falconidae + Accipitridae). Monophyly of the traditional “Gruiformes” (cranes and allies) and ”Ciconiiformes” (storks and allies) was also not recovered. The primary analysis resulted in support for a sister group relationship between Gaviidae (loons) and Podicipedidae (grebes)—foot‐propelled diving birds that share many features of the pelvis and hind limb. Exclusion of Gaviidae and reanalysis of the data set, however, recovered the sister group relationship between Phoenicopteridae (flamingos) and grebes recently proposed from molecular sequence data.  相似文献   

17.
The common raven (Corvus corax) is one of the most widely distributed and recognizable avian species in the world. Recent molecular work, however, described two mitochondrial lineages of the common raven, termed the Holarctic clade and the California clade, and questioned the monophyly of this taxon by placing the Chihuahuan raven (C. cryptoleucus) sister to the California clade. We evaluated this phylogenetic hypothesis with additional sequence data and increased taxon sampling. We used ~3.7 kb of DNA sequence data from sections of the mitochondrial coding genes COI, cyt b and ND4, a fragment of the non‐coding mitochondrial DNA control region, and the entire intron 7 of the nuclear β‐fibrinogen gene (β‐fibint 7). We combined these DNA sequence data to erect hypotheses of relationships for lineages of the common raven and related taxa. Maximum parsimony, maximum likelihood, and Bayesian methods yield a paraphyletic common raven. These analyses nest the Chihuahuan raven within the common raven, with strong support for a sister relationship between the Chihuahuan raven and the California clade. In addition, the pied crow (C. albus) is also nested within the common raven, and is sister to the Holarctic clade. Our analyses reveal the challenge of determining phylogenetic relationships and species boundaries in this morphologically conservative genus, and suggest that future molecular work with increased taxon sampling will uncover cryptic species and novel evolutionary relationships. Lastly, this survey is one of a growing number of avian phylogenetic studies to employ either β‐fibint 7 or COI, and the first to use ND4. We developed a simple procedure for comparing rates of evolution in molecular markers, and show that in Corvus the nuclear intron β‐fibint 7 is evolving at a considerably slower pace than the mitochondrial markers, while COI is evolving at a slower rate than cyt b, and ND4 approximately the same rate as cyt b. Hence, β‐fibint 7 and other individual nuclear introns may have limited utility in resolving relationships among recently evolved taxa, whereas both COI and ND4 should be useful in a wide range of avian molecular genetic investigations.  相似文献   

18.
Despite increased understanding of higher-level relationships in passerine birds in the last 15 years, the taxonomic boundaries and phylogenetic interrelationships of the major groups of the Tyrannida (including the cotingas, manakins, tityrines, and tyrant flycatchers) remain unclear. Here, we present an analysis of DNA sequence data obtained from two nuclear exons, three introns, and one mitochondrial gene for 26 genera of Tyrannida and 6 tracheophone outgroups. The analysis resulted in well-supported hypotheses about the earliest evolution within Tyrannida. The Cotingidae, Pipridae, Tityrinae (sensu) [Prum, R.O., Rice, N.H., Mobley, J.A., Dimmick, W.W., 2000. A preliminary phylogenetic hypothesis for the cotingas (Cotingidae) based on mitochondrial DNA. Auk 117, 236-241], Tyrannidae, and the tyrannid subfamiles Tyranninae and Pipromorphinae (sensu) [Sibley, C.G., Monroe, B. L. Jr., 1990. Distribution and Taxonomy of Birds of the World. Yale University Press, New Haven, CT] were all found to be reciprocally monophyletic (given the present taxon sampling). The Cotingidae and Pipridae form a clade that is the sister group to a well-supported clade including Oxyruncus, the Tityrinae, Piprites, and the Tyrannidae. Oxyruncus is the sister group to the Tityrinae, and Piprites is placed as the sister group to the Tyrannidae. The tyrannid subfamilies Tyranninae and Pipromorphinae are monophyletic sister taxa, but the relationships of Platyrinchus mystaceus to these two clades remains ambiguous. The presence of medial (=internal) cartilages in the syrinx is a synapomorphy for the Oxyruncus-Tityrinae-Piprites-Tyrannidae clade. Although morphological synapomorphies currently support the monophyly of both the Pipridae and the Cotingidae, convergences and/or reversals in morphological character states are common in Tyrannida. The relationship between Oxyruncus and the Tityrinae is congruent with additional syringeal synapomorphies and allozyme distance data. Accordingly, we propose the recognition the family Tityridae within the Tyrannida to include the genera Schiffornis, Laniisoma, Laniocera, Iodopleura, Xenopsaris, Pachyramphus, Tityra, and Oxyruncus.  相似文献   

19.
The evolutionary history of the family Bovidae remains controversial despite past comprehensive morphological and genetic investigations. In an effort to resolve some of the systematic uncertainties within the group, a combined molecular phylogeny was constructed based on four independent nuclear DNA markers (2,573 characters) and three mitochondrial DNA genes (1,690 characters) for 34 bovid taxa representing all seven of the currently recognized bovid subfamilies. The nuclear DNA fragments were analyzed separately and in combination after partition homogeneity tests were performed. There was no significant rate heterogeneity among lineages, and retention index values indicated the general absence of homoplasy in the nuclear DNA data. The conservative nuclear DNA data were remarkably effective in resolving associations among bovid subfamilies, which had a rapid radiation dating back to approximately 23 MYA. All analyses supported the monophyly of the Bovinae (cow, nilgai, and kudu clade) as a sister lineage to the remaining bovid subfamilies, and the data convincingly suggest that the subfamilies Alcelaphinae (hartebeest, tsessebe, and wildebeest group) and Hippotraginae (roan, sable, and gemsbok clade) share a close evolutionary relationship and together form a sister clade to the more primitive Caprinae (represented by sheep, goat, and muskox). The problematic Reduncinae (waterbuck, reedbuck) seem to be the earliest-diverging group of the Caprinae/Alcelaphinae/Hippotraginae clade, whereas the Antilopinae (gazelle and dwarf antelope clade) were always polyphyletic. The sequence data suggest that the initial diversification of the Bovidae took place in Eurasia and that lineages such as the Cephalophinae and other enigmatic taxa (impala, suni, and klipspringer) most likely originated, more or less contemporaneously, in Africa.  相似文献   

20.
Chicken repeat 1 (CR1) is a member of the non-long terminal repeat class of retrotransposons. We have isolated a truncated CR1 element within the third intron of the lactate dehydrogenase B gene of the coscoroba and the Cape Barren goose (Anseriformes; Coscoroba coscoroba, Cereopsis novaehollandiae). Because the element was absent in orthologous loci within mallard (Anas platyrhynchos), snow goose (Anser caerulescens), and tundra swan (Cygnus columbianus), it provides strong support to the recent novel proposal by Donne-Goussé et al. [Donne-Goussé, C., Laudet, V., H?nni, C., 2002. A molecular phylogeny of anseriformes based on mitochondrial DNA analysis. Mol. Phylogenet. Evol. 23, 339-356] that Cape Barren goose is the sister taxon to coscoroba. The time of insertion was approximately 10.5 Mya or less estimated from mitochondrial DNA sequence information. Because this is a recent event, the DNA sequence of this CR1 should be close to that existing at the time of its insertion. This is reflected by the consistency of several structural features expected in a new CR1 copy such as the unaltered flanking target site duplication and inverted repeats that lie 22 bp apart near the 3' end of the element. Hybridization experiments show that numerous copies of sequences closely related to the coscoroba CR1 element are dispersed throughout the genomes of tested Anseriformes, but none were detected in representatives of Galliformes and Struthioniformes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号