首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have used long-range PCR to identify mutations in the duplicated part of the PKD1 gene. By means of a PKD1-specific primer in intron 1, an approximately 13.6-kb PCR product that includes exons 2-15 of the PKD1 gene has been used to search for mutations, by direct sequence analysis. This region contains the majority of the predicted extracellular domains of the PKD1-gene product, polycystin, including the 16 novel PKD domains that have similarity to immunoglobulin-like domains found in many cell-adhesion molecules and cell-surface receptors. Direct sequence analysis of exons encoding all the 16 PKD domains was performed on PCR products from a group of 24 unrelated patients with autosomal dominant polycystic kidney disease (ADPKD [MIM 173900]). Seven novel mutations were found in a screening of 42% of the PKD1-coding region in each patient, representing a 29% detection rate; these mutations included two deletions (one of 3 kb and the other of 28 bp), one single-base insertion, and four nucleotide substitutions (one splice site, one nonsense, and two missense). Five of these mutations would be predicted to cause a prematurely truncated protein. Two coding and 18 silent polymorphisms were also found. When, for the PKD1 gene, this method is coupled with existing mutation-detection methods, virtually the whole of this large, complex gene can now be screened for mutations.  相似文献   

3.
Two murine models of polycystic kidney disease (PKD) in humans are currently available: the infant-type cpk in mice and the adult-type pcy mutation in mice. Our linkage analysis was to determine whether these genes are allelic forms of the same gene, or infant-type and adult-type PKD resulting from homozygous and heterozygous mutation, as in the rat Cy gene. We found that the pcy gene in the mice was linked with the d gene on chromosome 9, but the cpk gene was not. A segregation test indicated that the two genes are inherited independently. This indicates that the cpk and pcy genes are not alleles and that the genetic mechanism of PKD pathogenesis in the mouse is different from that in the Cy rat.  相似文献   

4.
Expression of the human Ke 6 gene, 17β-hydroxysteroid dehydrogenase type 8, in E. coli and the substrate specificity of the expressed protein were examined. The tissue distribution of mRNA expression of the human Ke 6 gene was also studied using real-time PCR. Human Ke 6 gene was expressed as an enzymatically-active His-tag fusion protein, whose molecular weight was estimated to be 32.5 kDa by SDS-polyacrylamide gel electrophoresis. Expressed human Ke 6 gene effectively catalyzed the conversion of estradiol into estrone. Testosterone, 5α-dihydrotestosterone, and 5-androstene-3β,17β-diol were also catalyzed into the corresponding 17-ketosteroid at 2.4–5.9% that of estradiol oxidation. Furthermore, expressed enzyme catalyzed the reduction of estrone to estradiol, but the rate was a mere 2.3%. Human Ke 6 gene mRNA was expressed in the various tissues examined, such as brain, cerebellum, heart, lung, kidney, liver, small intestine, ovary, testis, adrenals, placenta, prostate, and stomach. Expression of human Ke 6 gene mRNA was especially abundant in prostate, placenta, and kidney. The levels in prostate and placenta were higher than that in kidney, where it is known to be expressed in large quantities.  相似文献   

5.
6.
7.
Autosomal dominant polycystic kidney disease is largely due to mutations in PKD1. PKD1 has an unusual genomic structure, including a 2.5-kb polypyrimidine sequence in intron 21, which has been postulated to lead to a high rate of spontaneous genomic mutation events. In addition, the majority of the gene is duplicated three to six times at 97-99% identity elsewhere in the genome. To identify genomic mutations in PKD1, we developed a multiplex ligation-dependent probe assay (MLPA) in which sites of variation between PKD1 and its copies were positioned at the ligation sites of the MLPA probe sets. Thirteen probe sets covered PKD1 exons 2 through 46, at an average spacing of 2.5 kb. Analysis of 27 independent PKD patient samples showed no evidence for genomic deletions confined to PKD1. Analysis of 15 tuberous sclerosis patient samples in which deletions in TSC2 extended into PKD1 showed no evidence of clustering of breakpoints near the polypyrimidine tract.  相似文献   

8.
Polycystin-1 and polycystin-2 are the products of PKD1 and PKD2, genes that are mutated in most cases of autosomal dominant polycystic kidney disease. Since the first two polycystins were cloned, three new members, polycystin-L, -2L2, and -REJ, have been identified. In this study, we describe a sixth member of the family, polycystin-1L1, encoded by PKD1L1 in human. The full-length cDNA sequence of PKD1L1, determined from human testis cDNA, encodes a 2849-amino-acid protein and 58 exons in a 187-kb genomic region. The deduced amino acid sequence of polycystin-1L1 has significant homology with all known polycystins, but the longest stretches of homology were found with polycystin-1 and -REJ over the 1453- and 932-amino-acid residues, respectively. Polycystin-1L1 is predicted to have two Ig-like PKD, a REJ, a GPS, a LH2/PLAT, a coiled-coil, and 11 putative transmembrane domains. Several rhodopsin-like G-protein-coupled receptor (GPCR) signatures are also found in polycystin-1L1. Dot-blot analysis and RT-PCR revealed that human PKD1L1 is expressed in testis and in fetal and adult heart. In situ hybridization analysis showed that the most abundant and specific expression of Pkd1l1 was found in Leydig cells, a known source of testosterone production, in mouse testis. We have assigned PKD1L1 to the short arm of human chromosome 7 in bands p12--p13 and Pkd1l1 to mouse chromosome 11 in band A2 by fluorescence in situ hybridization. We hypothesize a role for polycystin-1L1 in the heart and in the male reproductive system.  相似文献   

9.
10.
11.
We have isolated the full-length cDNA of a novel human serine threonine protein kinase gene. The deduced protein sequence contains two cysteine-rich motifs at the N terminus, a pleckstrin homology domain, and a catalytic domain containing all the characteristic sequence motifs of serine protein kinases. It exhibits the strongest homology to the serine threonine protein kinases PKD/PKCmicro and PKCnu, particularly in the duplex zinc finger-like cysteine-rich motif, in the pleckstrin homology domain and in the protein kinase domain. In contrast, it shows only a low degree of sequence similarity to other members of the PKC family. Therefore, the new protein has been termed protein kinase D2 (PKD2). The mRNA of PKD2 is widely expressed in human and murine tissues. It encodes a protein with a molecular mass of 105 kDa in SDS-polyacrylamide gel electrophoresis, which is expressed in various human cell lines, including HL60 cells, which do not express PKCmicro. In vivo phorbol ester binding studies demonstrated a concentration-dependent binding of [(3)H]phorbol 12,13-dibutyrate to PKD2. The addition of phorbol 12,13-dibutyrate in the presence of dioleoylphosphatidylserine stimulated the autophosphorylation of PKD2 in a synergistic fashion. Phorbol esters also stimulated autophosphorylation of PKD2 in intact cells. PKD2 activated by phorbol esters efficiently phosphorylated the exogenous substrate histone H1. In addition, we could identify the C-terminal Ser(876) residue as an in vivo phosphorylation site within PKD2. Phosphorylation of Ser(876) of PKD2 correlated with the activation status of the kinase. Finally, gastrin was found to be a physiological activator of PKD2 in human AGS-B cells stably transfected with the CCK(B)/gastrin receptor. Thus, PKD2 is a novel phorbol ester- and growth factor-stimulated protein kinase.  相似文献   

12.
Summary Polycystic kidney disease (PKD) is characterized by multiple renal cysts that are lined by epithelium and filled with fluid. PKD may result from one of a number of factors, either inherited or environmental. In this study, we have compared two mouse models in which PKD results from a genetic cause. In the C57BL/6J-cpk model, the mutated gene is unknown. In the other model, an SV40 large T antigen transgene causes renal cysts. We examined cultured cells from the kidneys of these mouse models, comparing growth characteristics. Although several features of PKD lead one to expect that the epithelial cells lining the cysts would have an increased rate of proliferation in culture, we found that they did not. The implications of these findings are discussed.  相似文献   

13.
We previously reported the isolation of a cDNA encoding the liver-specific isozyme of rat S-adenosylmethionine synthetase from a lambda gt11 rat liver cDNA library. Using this cDNA as a probe, we have isolated and sequenced cDNA clones for the rat kidney S-adenosylmethionine synthetase (extrahepatic isoenzyme) from a lambda gt11 rat kidney cDNA library. The complete coding sequence of this enzyme mRNA was obtained from two overlapping cDNA clones. The amino acid sequence deduced from the cDNAs indicates that this enzyme contains 395 amino acids and has a molecular mass of 43,715 Da. The predicted amino acid sequence of this protein shares 85% similarity with that of rat liver S-adenosylmethionine synthetase. This result suggests that kidney and liver isoenzymes may have originated from a common ancestral gene. In addition, comparison of known S-adenosylmethionine synthetase sequences among different species also shows that these proteins have a high degree of similarity. The distribution of kidney- and liver-type S-adenosylmethionine synthetase mRNAs in kidney, liver, brain, and testis were examined by RNA blot hybridization analysis with probes specific for the respective mRNAs. A 3.4-kilobase (kb) mRNA species hybridizable with a probe for kidney S-adenosylmethionine synthetase was found in all tissues examined except for liver, while a 3.4-kb mRNA species hybridizable with a probe for liver S-adenosylmethionine synthetase was only present in the liver. The 3.4-kb kidney-type isozyme mRNA showed the same molecular size as the liver-type isozyme mRNA. Thus, kidney- and liver-type S-adenosylmethionine synthetase isozyme mRNAs were expressed in various tissues with different tissue specificities.  相似文献   

14.
15.
16.
17.
We have isolated cDNA clones for mouse tenascin and analyzed expression of tenascin mRNAs during embryonic development of the kidney and gut. The deduced amino acid sequence of the mouse tenascin cDNAs shows a modular structure of repeats similar to chicken and human tenascin. In mouse there are 14.5 cysteine-rich repeats with similarity to the EGF repeat, followed by several repeats with similarity to the type III repeat of fibronectin. A longer variant contains 13 fibronectin type III repeats, whereas a shorter splice variant of mouse tenascin lacks the 5 type III repeats that occur directly after the fifth repeat in the longer variant. Contrary to the chicken and human sequences, mouse tenascin does not contain an RGD sequence in the third type III repeat implicated in cell attachment, or in any other positions. In Northern hybridizations to RNA from primary embryonic fibroblasts, the cDNA clone M 20/1 detects two mRNAs with sizes close to 6 and 8 kb. This, and the other data presented here suggest that the two major mouse tenascin polypeptides arise through an alternative RNA splicing. The two major mRNAs are differentially expressed during development. The 8-kb mRNA is more prominent than the 6-kb mRNA throughout prenatal kidney development, but during postnatal development the ratio of the two mRNAs changes. A different expression pattern is seen in the developing gut where the 6-kb mRNA predominates during embryogenesis with the 8-kb mRNA appearing later. The mRNA data of the developing gut correspond with previous protein data, which showed that the shorter Mr 210,000 polypeptide predominates during earlier developmental stages and the larger Mr 260,000 polypeptide appears later in the embryonic gut (Aufderheide, E., and P. Ekblom. 1988. J. Cell Biol. 107:2341-2349).  相似文献   

18.
19.
Regulated expression of the erythropoietin (EPO) gene in the adult kidney plays a key role in the regulation of erythropoiesis. However, uncertainty exists regarding the type of kidney cells involved in EPO gene expression. We previously showed by light microscopy that the lacZ reporter gene is expressed and inducible by hypoxia/anemia in the proximal convoluted tubular (PCT) cells of the kidneys of transgenic mice carrying the 5′-lacZ construct, in which the lacZ gene was placed downstream of a 7.0-kb mouse EPO gene segment containing 6.5 kb of the 5′-flanking sequence. We, report here the light and transmission electron microscopic examination of lacZ expression in the kidneys of transgenic mice carrying the 5′-lacZ construct and two additional constructs carrying the 6.5-kb 5′-flanking sequence with the body of the gene alone, or along with the 1.2-kb 3′-flanking sequence. The electron microscopic analyses unequivocally demonstrated that lacZ under the regulatory control of the 6.5-kb 5′-flanking sequence with or without the body of the gene and the 1.2-kb 3′-flanking sequence was expressed predominantly in the proximal convoluted tubular cells of the kidney following hypoxia induction.  相似文献   

20.
Polycystic kidney disease (PKD) is the most common genetic cause for end-stage renal failure. Numerous fluid-filled cysts develop in the parenchyma of the kidney. They compromise kidney function with increasing number and size of the cysts until renal failure is inevitable. The cysts are epithelial in origin but cysts develop in different nephron segments depending on the type of the PKD. Animal models with PKD have been used for several decades to unravel the molecular mechanisms of cystogenesis. Initially, research was dependent on the morphological analysis of spontaneously emerging cystic phenotypes. Nowadays, in addition to theses models transgenic and knock-out models targeting PKD genes are also available. The localization of “cystoproteins” in the cilia of the tubulus epithelia and the involvement of cilia-dependent pathways in cystogenesis was shown only with the help of these animal models. This article gives an overview on the currently available murine models presenting with PKD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号