首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphatidylinositol-specific phospholipase C of murine lymphocytes   总被引:3,自引:0,他引:3  
Phosphatidylinositol-specific phospholipase C (PI-phospholipase C) was found primarily in the cytosolic fraction of murine splenic lymphocytes. However, small but significant amounts of the activity of the enzyme were detected in the microsome and plasma membrane fractions. Both the cytosolic and membrane-bound phospholipases C specifically hydrolyzed inositol phospholipids, phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate. PI-Phospholipase C activity was detected in the cytosolic and microsome fractions from both T-cell-enriched and B-cell-enriched spleen cells. The membrane-bound enzyme was distinguishable from the cytosolic enzyme in the following properties. The cytosolic PI-phospholipase C showed optimal activity at pH 6.0 while the membrane-bound enzyme had two pH optima between pH 5.0 and 7.0. The activity of the cytosolic enzyme was first detected at 1 microM Ca2+, and maximum activity was observed at 100 microM Ca2+, while the membrane-bound PI-phospholipase C required higher Ca2+ concentrations, of millimolar order. The membrane-bound enzyme could hardly be extracted with 1 M NaCl but was extracted with 0.4% cholate.A portion of the membrane-bound PI-phospholipase C activity in the cholate extract was absorbed by concanavalin A-Sepharose and specifically eluted with an alpha-methylmannoside solution. The cytosolic enzyme, which was water soluble, did not bind to concanavalin A-Sepharose. Trypsinization of lymphocytes before subcellular fractionation caused a significant decrease in the PI-phospholipase C activity in the microsome fraction but almost no loss at all of the cytosolic enzyme activity.  相似文献   

2.
The properties and subcellular distribution of phosphatidate phosphatase (EC 3.1.3.4) from adipose tissue have been investigated. The enzyme was assayed using both aqueous phosphatidate and membrane-bound phosphatidate as substrates. When measured with aqueous substrate, activity was detected in the mitochondria, the microsomes, and the soluble fraction. Mg(2+) at low concentration stimulated the phosphatidate phosphatase from soluble and microsomal fractions but had no effect on the mitochondrial phosphatidate phosphatase. At higher concentration Mg(2+) was inhibitory. In the presence of Mg(2+), the phosphatidate phosphatase from soluble and microsomal fractions was active against membrane-bound phosphatidate. No activity was demonstrated with membrane-bound substrate in the absence of Mg(2+). Mitochondria did not contain activity toward the membrane-bound substrate. The rate of utilization of aqueous phosphatidate was always higher than that of membrane-bound substrate. These results indicate that there are at least two different phosphatidate phosphatases in adipose tissue.  相似文献   

3.
In a wide variety of cells, phosphatidylcholine hydrolysis in response to diverse agents is catalyzed by phospholipase D (PLD) activities that are believed to be membrane-bound. Indeed, PLD has been detected in membrane fractions of several tissues and cells. We now demonstrate in various bovine tissue including lung, brain, spleen, heart, kidney, thymus, and liver as well as rat lung that a great majority of the detectable PLD activity is cytosolic. This cytosolic PLD activity differs from a less abundant membrane-bound isozyme by chromatographic mobilities on anion exchange and gel filtration columns, by substrate specificity, by substrate concentration dependence, and by divalent cation and detergent effects. Fractionation of the cytosol by anion exchange chromatography enhances PLD activity up to 20-fold, suggesting the presence in the cytosol of PLD inhibitory factor(s). We conclude that mammalian PLD exists in multiple forms and that appropriate selection of assay conditions is critical for observing PLD activity in the cytosol.  相似文献   

4.
EDTA treatment of intestinal brush border membranes (BBM) and epithelial cell supernatant completely inhibited alkaline phosphatase (AP) activity in suckling rat intestine. AP activity was fully regained upon dialysis of the preparations against Zn2+ and to a lesser extent against Co2+, Ca2+ and Mn2+ ions. Other metal ions (Cd2+ and Mg2+) tested were essentially ineffective in restoring the enzyme activity. Considerable differences were observed in kinetic characteristics of the membrane-bound and soluble AP activities in response to various metal ions. There were apparent differences in Km, Vmax, energy of activation (Ea) and thermal stability of the soluble and membrane-bound AP activities, after metal ion substitutions. Nearly 35% AP activity was solubilized on sodium dodecyl sulphate treatment of brush borders (membrane protein: detergent ratio 1:3; w/w). Dialysis of detergent solubilized BBM against different metal ions reconstituted AP activity in the particulate fraction: the order of effectiveness was Zn greater than Ca greater than Mn greater than Co. The kinetic properties of the reconstituted AP were essentially similar to the non-integrated enzyme activity in response to various divalent metal ions examined. But there were apparent differences in Km, Vmax, Ea and thermal stability of the reconstituted AP activity compared to native brush border enzyme. The results suggest the unique requirement of Zn ions for stability and catalytic activity of the soluble and membrane-bound AP activity in suckling rat intestine.  相似文献   

5.
Upon fractionation of a postmitochondrial supernatant from rat liver, the synthase phosphatase (EC 3.1.3.42) activity (assayed at high tissue concentrations) was largely recovered in the glycogen fraction and to a minor extent in the cytosol. In contrast, the phosphorylase phosphatase (EC 3.1.3.17) activity was approximately equally distributed between these two fractions, a lesser amount being recovered in the microsomal fraction. The phosphatase activities in the microsomal and glycogen fractions were almost completely inhibited by a preincubation with the modulator protein, a specific inhibitor of type-1 (ATP,Mg-dependent) protein phosphatases. In the cytosolic fraction, however, type-2A (polycation-stimulated) phosphatase(s) contributed significantly to the dephosphorylation of phosphorylase and of in vitro phosphorylated muscular synthase. Liver synthase b, used as substrate for the measurement of synthase phosphatase throughout this work, was only activated by modulator-sensitive phosphatases. Trypsin treatment of the subcellular fractions resulted in a dramatically increased (up to 1000-fold) sensitivity to modulator, a several-fold increase in phosphorylase phosphatase activity and a complete loss of synthase phosphatase activity. Similar changes occurred during dilution of the glycogen-bound enzyme. A preincubation with the deinhibitor protein, which is known to counteract the effects of inhibitor-1 and modulator, increased several-fold the phosphorylase phosphatase activity, but exclusively in the cytosolic and microsomal fractions. It did not affect the synthase phosphatase activity. Taken together, the results indicate the existence of distinct, multi-subunit type-1 phosphatases in the cytosolic, microsomal and glycogen fractions.  相似文献   

6.
The activities of monoamine oxidase (MAO), catechol-O-methyltransferase (COMT), phenol sulfotransferase (PST), alkaline phosphatase (AP), gamma-glutamyl transpeptidase (GT), and angiotensin converting enzyme (ACE) were quantitated in primary cultures of bovine brain microvessel endothelial cell monolayers and cerebral gray matter. Significant MAO-A and -B, cytosolic and membrane-bound COMT, PST, AP, GT, and ACE activities are demonstrated in bovine gray matter. By comparison, enzyme activities of the monolayers vary with the age of the monolayer and are generally higher in complete monolayers. Relative to gray matter enzyme activities, the monolayers are enriched with AP, GT, and ACE, enzymes considered to be markers for brain endothelium. Results also indicate that the activities of MAO-A and PST in the monolayers approach those found in the gray matter. Conversely, cytosolic COMT and MAO-B activities in the monolayers are negligible and much lower, respectively, compared to activities in gray matter. Additional studies with both tissues suggest that the PST of both tissues is the thermostable form of the enzyme.  相似文献   

7.
F R Simon  E Sutherland 《Enzyme》1977,22(2):80-90
Although it is generally believed that hepatic alkaline phosphatase is localized to liver plasma membranes, 63% is present in the cytosol fraction after ultracentrifugation of rat liver homogenates. Divalent cation requirements, heat inactivation, pH optima, Km and chemical inhibition characteristics of partially purified alkaline phosphatase enzymes prepared from membrane and cytosol fractions suggested different structural forms. Furthermore, bile duct obstruction and ethinyl estradiol administration preferentially increased membrane-bound alkaline phosphatase activity, while cytosol activity was unaltered. In contrast, phenobarbital treatment decreased membrane-bound alkaline phosphatase and increased cytosol activity. These studies support the presence of two forms of hepatic alkaline phosphatase in rat liver which are regulated by different control mechanisms.  相似文献   

8.
Suckling rat intestine contains 35 and 65% of the cytosolic and membrane-bound alkaline phosphatase (AP) activities. The corresponding values for sucrase were 20 and 80% respectively. The amount of the soluble enzymes was reduced to 7-11% in adult rat intestine. Administration of cortisone, thyroxine or insulin to suckling animals induced adult type distribution of the enzymes. There were apparent differences in kinetic characteristics of soluble and brush border enzymes, but the kinetic properties of the normally developed and hormone-induced AP and sucrase were essentially similar. This suggested identical nature of these enzymes under these conditions. A biphasic Arrhenius plot was obtained for AP in weaned and hormone injected pups with a break point around 18 degrees C, while the soluble enzyme yielded a monophasic curve (Ea = 8-11 kcal/mole). Arrhenius plot for sucrase was monophasic in the suckling, hormone-injected and adult rat intestine (Ea = 8.3-15.1 kcal/mole). Membrane-bound enzymes were generally labile, while soluble enzyme activities were stable to heat treatment (sucrase at 50 degrees C and AP at 60 degrees C) in various experimental groups.  相似文献   

9.
Summary Fusion of the alkaline phosphatase gene (phoA) which lacks its own signal peptide sequence to the N-terminal region of hlyA, the structural gene for Escherichia coli haemolysin, leads to active alkaline phosphatase (AP). AP activity depends on the length of the N-terminal region of hlyA. An optimum is reached when 100–200 amino acids of HlyA are fused to PhoA but fusion of as little as 13 amino acids of HlyA to PhoA is sufficient to yield appreciable AP activity. When cells are treated with lysozyme most of the AP activity is found associated with the membrane fraction but a substantial amount is also found in the soluble fraction, most of which may represent, a periplasmic pool of AP. The soluble portion of AP activity is significantly increased when the cells are disrupted by ultrasonication, which indicates that the fusion proteins are only loosely associated with the membrane and that large parts are already located on the outside of the cytoplasmic membrane. The expected fusion proteins were identified in the soluble and the membrane fractions and their amounts in these fractions correlated well with AP activity.  相似文献   

10.
The effects of levonorgestrel treatment (4 micrograms/day per kg body weight 0.75 for 18 days) on rate-limiting enzymes of hepatic triacylglycerol synthesis, namely glycerol-3-phosphate acyltransferase and phosphatidic acid phosphatase were investigated in microsomal, mitochondrial and cytosolic fractions of rat liver. Levonorgestrel treatment resulted in a significant reduction (26%) of hepatic microsomal glycerol-3-phosphate acyltransferase specific activity. Hepatic mitochondrial glycerol-3-phosphate acyltransferase specific activity was unchanged. Levonorgestrel treatment also significantly reduced (by 20%) the specific activity of hepatic microsomal magnesium-independent phosphatidic acid phosphatase. However, magnesium-dependent phosphatic acid phosphatase specific activities in microsomal and cytosolic fractions were unaffected. Cytosolic magnesium-independent phosphatidic acid phosphatase activity was also unchanged. These studies are consistent with the view that levonorgestrel lowers serum triacylglycerol levels, at least in part, by inhibition of the glycerol-3-phosphate acyltransferase (EC 2.3.1.15) step in hepatic triacylglycerol synthesis.  相似文献   

11.
Gene therapy is used to induce immune responses, regulate tumor growth, or sensitize tumor cells to specific treatment. For sensitizing tumor cells to specific drug, we considered a prodrug-converting system using membrane-bound intestinal alkaline phosphatase (IAP) as the prodrug-activating genes. The IAP is capable of converting a relatively non-cytotoxic prodrug, etoposide phosphate (EP), into etoposide with a significant antitumor activity. We used the retroviral vector for transducing IAP gene into SNU638 gastric cancer cells and EP was prepared by phosphorylation of etoposide. To determine the chromosomal incorporation of membrane-bound IAP gene and AP activity in IAP gene-transduced cells (SNU638/IAP), we performed genomic PCR and AP activity analysis. In genomic DNA of SNU638/IAP cells, full cDNA fragment of a 2.5 kb IAP was detected, and AP activity was shown at most 1518-fold increase compared with control cells. According to the in vitro cytotoxicity study, SNU638/IAP cells greatly enhanced the cytotoxic effect in proportion to the concentration of EP, while control cells didn't cause any cytotoxic effects after EP treatment. Especially, the cell population of G2/M phase was increased in EP-treated SNU638/IAP cells because P4 DNA unknotting activity of topoisomerase II was decreased by EP treatment such as the action mechanism of etoposide. Finally, a strong antitumor response was observed in SNU638/IAP cancer cells-bearing nude mice that were treated with EP. These results suggest that the prodrug-converting system by membrane-bound IAP gene and EP prodrug is useful as the strong strategy of gene therapy for cancer treatment.  相似文献   

12.
Alkaline phosphatase as a reporter enzyme   总被引:3,自引:0,他引:3  
K Yoon  M A Thiede  G A Rodan 《Gene》1988,66(1):11-17
This study examines the use of alkaline phosphatase (AP) as a reporter enzyme. We constructed a plasmid containing the cDNA which encodes the bone/liver/kidney rat AP under the control of the simian virus 40 (SV40) early promoter and used it to transfect Chinese hamster ovary, SV40-transformed African Green Monkey kidney 7, and rat osteosarcoma 25/1 mammalian cells. AP activity in these cells, measured three days later, was 40-400-fold above background. When AP and chloramphenicol acetyltransferase (CAT) plasmids were cotransfected, the detection of AP activity by a simple spectrophotometric assay was at least as sensitive as the detection of CAT activity using a radioactive substrate. Moreover, since mammalian AP is a membrane-bound ectoenzyme, transfected cells can be visualized by histochemical staining. This approach was used to estimate transfection efficiency. The convenient methods for AP detection should make it a useful reporter enzyme.  相似文献   

13.
Chitinases isolated from membrane and cytosolic fractions of two mucoraceous fungi, Choanephora cucurbitarum and Phascolomyces articulosus, were investigated. The membrane-bound chitinase was isolated by Bio-Gel P-100 and DEAE Bio-Gel A chromatographic techniques. On SDS-PAGE the chitinase from both fungi migrated as a single band of M(r) 66 kDa. The cytosolic chitinase from the mycelial extracts of these fungi was separated by heat treatment, ammonium sulphate precipitation, and by affinity chromatography with regenerated chitin. SDS-PAGE showed two bands for each fungus with M(r) of 69.5 and 55 kDa in C. cucurbitarum and M(r) 69.5 and 53 kDa in Ph. articulosus. Chitinases, membrane bound or cytosolic, hydrolyzed regenerated chitin, colloidal chitin, glycol chitin, N,N'-diacetylchitobiose, and N,N',N"-triacetylchitotriose. Heavy metals, inhibitors, and N-acetylglucosamine inhibited chitinase activity, whereas trypsin and an acid protease enhanced its activity. Chitinase preparations showed lysozyme activity that was inhibited by histamine but not by N-acetylglucosamine. There was no N-acetylglucosamanidase activity, but beta-1,3 glucanase activity was found in cytosolic preparations only. Despite slight differences in their molecular mass, both the membrane-bound and cytosolic chitinases showed similarities in substrate utilization, response to inhibitors, and activation by trypsin and acid protease; pH and temperature optima also were similar.  相似文献   

14.
Two types of NADP-dependent isocitrate dehydrogenases (ICDs) have been reported: mitochondrial (ICD1) and cytosolic (ICD2). The C-terminal amino acid sequence of ICD2 has a tripeptide peroxisome targeting signal 1 sequence (PTS1). After differential centrifugation of the postnuclear fraction of rat liver homogenate, approximately 75% of ICD activity was found in the cytosolic fraction. To elucidate the true localization of ICD2 in rat hepatocytes, we analyzed the distribution of ICD activity and immunoreactivity in fractions isolated by Nycodenz gradient centrifugation and immunocytochemical localization of ICD2 antigenic sites in the cells. On Nycodenz gradient centrifugation of the light mitochondrial fraction, ICD2 activity was distributed in the fractions in which activity of catalase, a peroxisomal marker, was also detected, but a low level of activity was also detected in the fractions containing activity for succinate cytochrome C reductase (a mitochondrial marker) and acid phosphatase (a lysosomal marker). We have purified ICD2 from rat liver homogenate and raised a specific antibody to the enzyme. On SDS-PAGE, a single band with a molecular mass of 47 kD was observed, and on immunoblotting analysis of rat liver homogenate a single signal was detected. Double staining of catalase and ICD2 in rat liver revealed co-localization of both enzymes in the same cytoplasmic granules. Immunoelectron microscopy revealed gold particles with antigenic sites of ICD2 present mainly in peroxisomes. The results clearly indicated that ICD2 is a peroxisomal enzyme in rat hepatocytes. ICD2 has been regarded as a cytosolic enzyme, probably because the enzyme easily leaks out of peroxisomes during homogenization. (J Histochem Cytochem 49:1123-1131, 2001)  相似文献   

15.
Rab6 protein (rab6p) belongs to a family of ras-like GTP-binding proteins thought to be involved in the regulation of intracellular transport in mammalian cells. We have constructed a recombinant baculovirus in order to express rab6p in insect cells. We report here the characterization of four forms of this protein which are found in cytosolic and membrane fractions of infected Sf9 cells. The two major forms are a cytosolic 24 kD protein which represents the unprocessed precursor form of rab6p and a membrane-bound isoprenylated 23 kD protein which represents the processed form. Two other minor forms were also detected: a cytosolic isoprenylated 23 kD protein which may represent a pool in equilibrium with the 23 kD membrane-bound form and a 24 kD non-isoprenylated membrane-bound form which may represent an intermediate in the processing of rab6p.  相似文献   

16.
The distribution of polysaccharide depolymerase and glycoside (acid) hydrolase activity in nine genera of rumen entodiniomorphid and holotrich ciliate protozoa was examined by differential centrifugation. Sedimentable activity was detected in all of the protozoa examined and occurred principally in fractions that were prepared by centrifugation at 1000g for 10 min, 10,000g for 10 min, and 20,000g for 20 min (fractions F1, F2, and F3). Acid phosphatase was present in these subcellular fractions which contained membrane-bound vesicles 0.1–0.8 m in size. The enzyme location profile of the subcellular fractions differed within the genera examined. The distribution of the enzyme activity in the subcellular fractions indicated the presence of distinct populations of hydrolase-containing organelles and other functional vesicles in the rumen ciliates.  相似文献   

17.
The effect of methylglyoxal on protein -SH and -NH2 groups in cytosolic and membranous fractions of epithelial cells lining the gastrointestinal tract of rat was investigated, using isolated villus and crypt cells (enterocytes) and colonocytes. It was found that 11-12% cytosolic protein -SH and 14-17% membrane protein -SH groups were lost when villus and crypt cells were treated with 2 mM methylglyoxal. In colonocytes, the corresponding loss in protein -SH groups was 46 and 30% under the same treatment. Similarly, 27-37% protein -NH2 group in the cytosolic fraction and 18-19% protein -NH2 group in membranous fractions of the enterocytes were lost by 2 mM methylglyoxal treatment. In colonocytes, the loss of protein -NH2 group was 30 and 15% in cytosolic and membranous fractions, respectively, under the same treatment. Effect of methylglyoxal on activity of various brush border enzymes such as alkaline phosphatase, gamma-glutamyl transpeptidase, leucine aminopeptidase, Mg2(+)-ATPase, sucrase and lactase was also studied. Alkaline phosphatase and gamma-glutamyl transpeptidase activities were inhibited to the extent of 30 and 15% respectively. There was no significant change in the activities of other enzymes after treating the brush border vesicles with 2 mM methylglyoxal. These findings show that methylglyoxal can cause loss of protein thiol and amino groups and enzyme activity in mucosal cells of rat gastrointestinal tract and the effect is more pronounced in colonocytes, which are in constant contact with bacterial metabolites.  相似文献   

18.
Phosphatidate phosphatase activity was found both in the cytosol and in the microsomal membrane of maturing safflower seeds. The combined and relative activities of these two forms varied with seed maturation. During the period of rapid triacylglycerol accumulation in the cell, most of the phosphatidate phosphatase activity was membrane-bound; at the initial and last stages of seed development when triacylglycerol synthesis was at an insignificant level, the majority of the activity was soluble. The potassium salts of palmitic, stearic and oleic acids, which are the fatty acid products of proplastids, caused the translocation of the cytosolic phosphatidate phosphatase to the microsomal membrane, while laurate and linoleate, which are not products of proplastids, showed no effect. Oleoyl-CoA did not convert the soluble form of the enzyme into the membrane-bound form. The translocation induced by oleate was reversible. The cytosolic phosphatidate phosphatase of safflower seeds was not transferred to the microsomal membranes prepared from soybean, a plant species of Leguminosae, and from rapeseed, a species of Cruciferae, but was transferred to that from sunflower, which belongs to the same family as safflower, Compositae. These observations suggest that in maturing oil seeds the rate of fatty acid synthesis in proplastids may regulate the species-specific translocation of phosphatidate phosphatase between the cytosol and the endoplasmic reticulum membrane where triacylglycerol synthesis occurs and that in turn the translocation of this ambiquitous enzyme could control the rate of triacylglycerol synthesis in the cell.  相似文献   

19.
Characteristics of 5'-nucleotide phosphodiesterase (phosphodiesterase I, EC 3.1.4.1) and alkaline phosphatase (EC 3.1.3.1) activities in tumor cell lines of human and murine origin were examined. Of the 15 cell lines tested, 5'-nucleotide phosphodiesterase activity in 13 cell lines and alkaline phosphatase activity in 10 cell lines were inhibited by N-ethylmaleimide and activated by dithiothreitol (N-ethylmaleimide-sensitive), and suggested to be SH-enzymes. In contrast, the two phosphohydrolases from normal tissues were inactivated by dithiothreitol, but not by N-ethylmaleimide (dithiothreitol-sensitive). There was only one tumor cell line in which both activities were dithiothreitol-sensitive. Human hepatoma PLC/PRF/5 cells appear to possess both types of 5'-nucleotide phosphodiesterase and alkaline phosphatase, and the subcellular distribution of these enzymes in this cell line was investigated. Dithiothreitol-sensitive 5'-nucleotide phosphodiesterase and alkaline phosphatase of PLC/PRF/5 cells were localized in the plasma membrane as in normal tissues, but N-ethylmaleimide-sensitive phosphohydrolases were soluble cytosolic proteins. N-Ethylmaleimide-sensitive 5'-nucleotide phosphodiesterase and alkaline phosphatase activities from other cell lines were also recovered in the cytosol. Molecular masses of cytosolic N-ethylmaleimide-sensitive phosphohydrolases were apparently smaller than their membrane-bound dithiothreitol-sensitive counterparts, as judged from gel filtration. It was concluded that many tumor cell lines lack plasma membrane 5'-nucleotide phosphodiesterase and alkaline phosphatase, but express enzymes with similar activities in the cytosol, with properties clearly distinguishable from enzymes so far characterized.  相似文献   

20.
It previously has been demonstrated that synthesis of the periplasmic maltose-binding protein (MBP) and alkaline phosphatase (AP) of Eschericha coli predominantly occurs on membrane-bound polysomes. In this study, signal sequence alterations that adversely affect export of MBP and AP, resulting in their cytoplasmic accumulation as unprocessed precursors, were investigated to determine whether they have an effect on the intracellular site of synthesis of these proteins. Our findings indicate that export-defective MBP and AP are not synthesized or are synthesized in greatly reduced levels on membrane-bound polysomes. In some instances, a concomitant increase in the amount of these proteins synthesized on free polysomes was clearly discerned. We also determined the site of synthesis of MBP and AP in strains harboring mutations thought to alter the cellular secretion machinery. It was found that the presence of a prlA suppressor allele partially restored synthesis of export-defective MBP on membrane-bound polysomes. On the other hand, the absence of a functional SecA protein resulted in the synthesis of wild-type MBP and AP predominantly on free polysomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号