首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Membrane preparations, capable of high rates of respiration-linked ATP synthesis, have been obtained from a gram-positive methylotrophic bacterium Bacillus sp. MGA3. NADH, succinate, reduced TMPD and methanol were shown to be suitable substrates for the oxidative phosphorylation. Esterification of orthophosphate was dependent on electron transfer, as evidenced by the requirement for both substrate and oxygen. Phosphorylation was also dependent on ADP and was destroyed by boiling the membrane preparation. The phosphorylation was markedly uncoupled by carbonyl cyanide p-(trichloromethoxy)-phenylhydrazone (CCCP) and was inhibited by N,N-dicyclohexylcarbodiimide (DCCD). KCN caused strong inhibition of substrate oxidation as well as phosphorylation for all substrates tested. Rotenone, amytal and antimycin A caused inhibition when NADH or methanol were used as substrates. Antimycin A inhibited respiration and ATP synthesis with succinate as substrate and had no effect on ascorbate —N,N,N,N-tetramethyl-p-phenylenediimide (TMPD) oxidation by membrane preparations of Bacillus sp. MGA3. P/O ratios determined were 2.4 with NADH, 1.7 with succinate and 0.8 with reduced TMPD. The measured P/O ratio with methanol-oxidizing system was similar to that with NADH (about 2.4).Abbreviations CCCP Carbonyl cyanide p-(trichloromethoxy)-phenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - TMPD N,N,N,N-tetramethyl-p-phenylenediimide - Q ubiquinone Q  相似文献   

2.
Internodal cells of the giant alga Chara corallina were perfused internally to replace the native cytoplasm, tonoplast and vacuole with artificial cytoplasm. Sodium efflux from perfused cells, measured by including 22Na in the perfusion media, was increased by increasing the internal sodium concentration and by decreasing the external pH, and was inhibited by external application of the renal diuretic amiloride. The sodium efflux was markedly ATP-dependent, with a 50-fold decrease in efflux observed after perfusion with media lacking ATP. Efflux in the presence of ATP was reduced by 33% by inclusion of 10 M N,N-dicyclohexylcarbodiimide in the perfusion medium. The membrane potential of the perfused cells approximated that of intact cells from the same culture. It is suggested that sodium efflux in perfused Chara cells proceeds via a secondary antiporter with protons, regulated by ATP in a catalytic role and with the proton motive force acting as the energy source.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - Mes 2-(N-morpholino)ethanesulphonic acid - Mops 3(N-morpholino)propanesulphonic acid - Taps tris(hydroxymethyl)methylaminopropanesulphonic acid  相似文献   

3.
In cell suspensions of Pseudomonas carboxydovorans pulsed with lithotrophic substrates (CO or H2) in the presence of oxygen, formation of reduced pyridine nucleotides and of ATP could be demonstrated using the bioluminescent assay. Experiments employing base-acid transition, an uncoupler and inhibitors of ATPase or electron transport enabled us to propose a model for the formation of NAD(P)H in chemolithotrophically growing P. carboxydovorans.The protonophor FCCP (carbonly-p-trifluormethoxyphenylhydrazon) inhibited both, formation of NAD(P)H and of ATP. In the absence of oxygen, a chemical potential imposed by base-acid transition resulted in the formation of NAD(P)H and ATP when electrogenic substrates (CO or H2) were present. This suggests proton motive force-driven NAD(P)H formation. The proton motive force was generated by oxidation of substrate, and not by ATP hydrolysis, as obvious from NAD(P)H formation during inhibition of ATP synthesis by oligomycin and N,N-dicyclohexylcarbodiimide.That the CO-born electrons are transferred via the ubiquinone 10-cytochrome b region to NADH dehydrogenase functioning in the reverse direction, was indicated by inhibition of NAD(P)H formation by HQNO (2-n-heptyl-4-hydroxyquinoline-N-oxide) and rotenone, and by resistance to antimycin A.We conclude that in P. carboxydovorans, growing with CO or H2, electrons and a proton motive force, generated by respiration, are required to drive an reverse electron transfer for the formation of reduced pyridine nucleotides.Abbreviations CODH carbon monoxide dehydrogenase - DCCD N,N-dicyclohexylcarbodiimide - FCCP carbonyl-p-trifluormethoxyphenylhydrazon - HQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - pmf proton motive force  相似文献   

4.
Y. Mori  T. Ueda  Y. Kobatake 《Protoplasma》1987,139(2-3):141-144
Summary ThePhysarum plasmodium shows rhythmic contractile activities with a period of a few min. Phases of the oscillation in the plasmodium migrating unindirectionally agreed sideways throughout at the frontal part. So, time course of an intracellular chemical component was determined by analyzing small pieces cut off successively from the frontal part of the large plasmodium. Intracellular NAD(P)H concentration oscillated with the same period as the rhythmic contraction but with a different phase advancing about 1/3 of the period. UV irradiation suppressed the rhythmic contraction without affecting the rhythmic variation of NAD(P)H. Thus, the NAD(P)H oscillator works independently of the rhythmic contractile system, but seems entraining with each other.Abbreviations UV ultraviolet - NADH nicotinamide adenine dinucleotide, reduced form - NADPH nicotinamide adenine dinucleotide phosphate, reduced form - ATP adenosine 5-triphosphate - cAMP cyclic adenosine 3, 5-monophosphate - FMNH2 flavin mononucleotide, reduced form - TCA tricarboxylic acid - BSA bovine serum albumin - DTT dithiothreitol  相似文献   

5.
The membrane potential in vacuoles isolated from storage roots of red beet (Beta vulgaris L.) has been studied by following changes in the fluorescence of the dye 3,3-diethylthiodicarbocyanine iodide, and by determining the uptake of the lipophilic triphenylmethylphosphonium cation. The vacuoles have a membrane potential, internal negative, which is estimated to be around-60 mV. These potentials become less negative by nearly 10 mV on addition of ATP. This ATP-dependent depolarisation is inhibited by the protonophore carbonylcyanide p-trifluoromethoxyphenylhydrazone and by the ATPase inhibitors, N,N-dicyclohexylcarbodiimide and trimethyltin chloride, but it is largely insensitive to sodium orthovanadate. Fusicoccin had no significant effect on the isolated vacuoles, but its addition to excised tissue caused a hyperpolarisation of the cells measured using a microelectrode.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - DiS-C2-(5) 3,3-diethylthiodicarbocyanine iodide - FCCP carbonylcyanide p-trifluoromethoxyphenylhydrazone - TPMP+ triphenylmethylphosphonium ion  相似文献   

6.
The ATPase activity present in plasmalemma-enriched preparations from maize coleoptiles shows an optimum at pH 6, a strong dependence on Mg2+, and is stimulated by K+ and other monovalent cations, both organic and inorganic. The activation of ATPase by K+ obeys Michaelis Menten kinetics, saturation being reached at 50 mM K+ concentration. K+, Mg2+-stimulated ATPase activity is strongly inhibited by N,N-dicyclohexylcarbodiimide and by diethylstilbestrol and, to a lesser extent, by octylguanidine.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - DES diethylstilbestrol - DTE dithioerythritol - Ellmans r 5-5 dithiobis (2 nitrobenzoic) acid - FC fusicoccin - NPA naphthylphthalamic acid - OG octylguanidine - PCMBS p-chloromercuribenzensulphonate  相似文献   

7.
Anabaena cylindrica grown in steady state continuous culture has an extractable ATP pool, measured on the basis of the luciferin-luciferase assay of 165±35 nmoles ATP mg chla -1. This pool is maintained by a dynamic balance between the rate of ATP synthesis and the rate of ATP utilization. Phosphorylating mechanisms which can maintain the pool in the short term are total photophosphorylation, cyclic photophosphorylation and oxidative phosphorylation. The alga can maintain its ATP pool by switching rapidly from one of these phosphorylating mechanisms to another depending on the environmental conditions. At each switch-over there is a transient drop in the ATP pool for a few seconds. On switching to conditions where only substrate level phosphorylation operates, the ATP pool falls immediately, but takes several hours to recover. The apparent rates of ATP synthesis by total photophosphorylation and by cyclic photophosphorylation are both much higher (210±30 and 250±13 moles ATP mg chla -1 h-1 respectively) than the apparent rate of ATP synthesis by oxidative phosphorylation (22±3 moles ATP mg chla -1 h-1). In long term experiments the ATP pool is maintained when total photophosphorylation is operating. It cannot be maintained in the long term by cyclic photophosphorylation alone in the absence of photosystem II activity or endogenous carbon compounds, or by oxidative phosphorylation in the absence of endogenous carbon compounds. Measurements of ATP, ADP and AMP show that the total pool of adenylates is similar in the light and in the dark in the short term. There is only limited production of ATP under dark anaerobic conditions when glycolysis and substrate phosphorylation can operate which suggests that these processes are of limited significance in providing ATP in Anabaena cylindrica.Abbreviations ADP adenosine 5-diphosphate - AMP adenosine 5-monophosphate - ATP adenosine 5-triphosphate - CCCP carbonyl cyanide m-chlorophenyl hydrazone - DCMU 3-(3,4-dichlorophenyl)1,1-dimethyl urea - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - PEP phosphoenolpyruvate  相似文献   

8.
Desulfomonile tiedjei (strain DCB-1) was previously shown to conserve energy for growth from reductive dechlorination of 3-chlorobenzoate coupled to formate oxidation. We tested the hypothesis that a chemiosmotic mechanism couples reductive dechlorination and ATP synthesis in D. tiedjei. Dechlorination resulted in an increase in the ATP pool of cells. Uncouplers and ionophores decreased both the dechlorination rate and the ATP pool. However, at low concentrations the inhibitors had relatively greater effects on the ATP pool, and in some cases, even appeared to stimulate dechlorination. Those agents could not completely inhibit ATP synthesis while allowing dechlorination activity. The proton-driven ATPase inhibitor, N,N-dicyclohexylcarbodiimide (DCCD), had similar effects. An imposed pH gradient also resulted in an increase in the ATP pool of cells, and this increase was partially inhibited by DCCD. Addition of 3-chlorobenzoate to cell suspensions caused proton translocation by the cells. Proton translocation was stimulated by the permeant thiocyanate anion and inhibited by uncouplers. A maximum H+/3-chlorobenzoate ratio of greater than two was observed. These findings suggest that dechlorination supports formation of a proton-motive force which in turn supports ATP synthesis via a proton-driven ATPase.Abbreviations 3CB 3-chlorobenzoate - CCCP m-chlorophenyl-hydrazone - DCCD N,N-dicyclohexylcarbodiimide - DNP 2,4-dinitrophenol - P proton-motive force - PCP pentachlorophenol  相似文献   

9.
Summary Imidazolides of dinucleotides such as ImpApA can be formed from the corresponding dinucleotides in a two-stage process, which gives up to 15% yields under potentially prebiotic conditions. First a solution of the dinucleotide and sodium trimetaphosphate is dried out at constant temperature and humidity. This produces polyphosphates such as pnApA in excellent yield (80%). The products are dissolved in water, imidazole is added, and the solution is dried out again. This yields the 5-phosphorimidazolides.Abbreviations P3! trimetaphosphate - A adenosine - U uridine - EDTA ethylenediaminetetraacetic acid - Ap adenosine 2(3)-phosphate - Ap! adenosine cyclic 2:3-phosphate - pA adenosine 5-phosphate - pA2p adenosine 2, 5-diphosphate - pA3p adenosine 3, 5-diphosphate - pAp! 5-phospho-adenosine cyclic 2:3-phosphate - ATP adenosine 5-triphosphate - ImpA adenosine 5-phosphorimidazolide - A2pA adenylyl-[25]-adenosine - A3pA adenylyl-[35]-adenosine - A2pU adenylyl-[25]-uridine - A3pU adenylyl-[35]-uridine - pA2pA 5-phosphoadenylyl-[25]-adenosine - pA3pA 5-phospho-adenylyl-[35]-adenosine - pA2pU 5-phospho-adenylyl-[25]-uridine - pA3pU 5-phospho-adenylyl-[35]-uridine - pApN (N= A, U) 5-phosphate of a dinucleoside phosphate - pnApN (N = A, U; n = 2, 3, 4.) 5-polyphosphate of a dinucleoside phosphate - ImpA2pA imidazolide of pA2pA - ImpA3pA imidazolide of pA3pA - ImpA2pU imidazolide of pA2pU - ImpA3pU imidazolide of pA3pU - ImpApN imidazolide of pApN  相似文献   

10.
J. E. Reed  R. Chollet 《Planta》1985,166(4):439-445
The concentrations of 17 nucleotides and three nucleosides have been determined in a batch suspension culture of Datura innoxia using a new procedure for extraction, purification and high-performance liquid chromatography separation of these compounds. The nucleotide pools change appreciably in the different phases of growth. These changes indicate the preparation for and initiation of cell proliferation, and reflect metabolic events during cell division, cell elongation and starvation. The main components of the nucleotide pool are uracil nucleotides, with uridine 5-diphosphate sugars as the predominant fraction, and the adenine nucleotides. Although their concentrations vary by a factor of more than 6 the ratio of the uracil to adenine nucleotides is kept fairly constant during growth. The energy charge is maintained at a rather high value. The correlation of these events with nutrient uptake and macromolecular synthesis by the batch culture is presented in the following paper.Abbreviations Glc glucose - GlcNAc 2-acetamido-2-deoxy-d-glucose - HPLC high performance liquid chromatography - UDP uridine 5-diphosphate  相似文献   

11.
The mitochondrial inner membrane possesses an anion channel (IMAC) which mediates the electrophoretic transport of a wide variety of anions and is believed to be an important component of the volume homeostatic mechanism. IMAC is regulated by matrix Mg2+ (IC50=38 µM at pH 7.4) and by matrix H+ (pIC50=7.7). Moreover, inhibition by Mg2+ is pH-dependent. IMAC is also reversibly inhibited by many cationic amphiphilic drugs, including propranolol, and irreversibly inhibited byN,N-dicyclohexylcarbodiimide. Mercurials have two effects on its activity: (1) they increase the IC50 values for Mg2+, H+, and propranolol, and (2) they inhibit transport. The most potent inhibitor of IMAC is tributyltin, which blocks anion uniport in liver mitochondria at about 1 nmol/mg. The inhibitory dose is increased by mercurials; however, this effect appears to be unrelated to the other mercurial effects. IMAC also appears to be present in plant mitochondria; however, it is insensitive to inhibition by Mg2+, mercurials, andN,N-dicyclohexylcarbodiimide. Some inhibitors of the adenine nucleotide translocase also inhibit IMAC, including Cibacron Blue, agaric acid, and palmitoyl CoA; however, atractyloside has no effect.  相似文献   

12.
The interaction of the membrane-bound glucose dehydrogenase from the anaerobic but aerotolerant bacterium Zymomonas mobilis with components of the electron transport chain has been studied. Cytoplasmic membranes showed reduction of oxygen to water with the substrates glucose or NADH. The effects of the respiratory chain inhibitors piericidin, capsaicin, rotenone, antimycin, myxothiazol, HQNO, and stigmatellin on the oxygen comsumption rates in the presence of NADH or glucose as substrates indicated that a complete and in the most parts identical respiratory chain is participating in the glucose as well as in the NADH oxidation. Furthermore, the presence of coenzyme Q10 (ubiquinone 10) in Z. mobilis was demonstrated. Extraction from and reincorporation of the quinone into the membranes revealed that ubiquinone is essential for the respiratory activity with glucose and NADH. In addition, a membrane-associated tetramethyl-p-phenylene-diamine-oxidase activity could be detected in Z. mobilis.Abbreviations ABTS 2,2-Azino-di-[3-ethyl-benzthiazolinesulfonate (6)] - GDH glucose dehydrogenase - HQNO 2-heptyl-4-hydroxy-quinoline-N-oxide - PQQ pyrroloquinoline quinone - TMPD N,N,N,N-tetramethyl-p-phenylene-diamine  相似文献   

13.
ATPase was detected in the membranes of a motile Streptococcus. Maximal enzymic activity was observed at pH 8 and ATP/Mg2+ ratio of 2. Mn2+ and Ca2+ could replace Mg2+ to some extent. Besides ATP, GTP and ITP were substrates. The enzyme was inhibited by N,N-dicyclohexylcarbodiimide but not by sodium azide, uncouplers or bathophenanthroline.An electrochemical gradient of protons, which was artificially imposed across the membranes of Streptococcus cells by manipulation of either the K+ diffusion potential or the transmembrane pH gradient, led to ATP synthesis. ATP synthesis was abolished by proton conductors, an inhibitor of the ATPase or an increase in the extracellular K+ concentration. A comparison between the phosphate potential and the electrochemical proton gradient showed that the data found are in agreement with a stoichiometry of 2 protons translocated per molecule ATP synthesized.Abbreviations electrochemical gradient of protons - DMO 5,5-dimethyl-2,4-oxazolidinedione - CCCP carbonylcyanide m-chlorophenylhydrazone - FCCP carbonylcyanide p-trifluoromethoxyphenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DNP 2,4-dimitrophenol  相似文献   

14.
Alkaloid uptake into vacuoles isolated from a Fumaria capreolata L. cell suspension culture was investigated. The uptake is carrier-mediated as shown by its substrate saturation, its sensitivity to metabolic inhibitors and especially by its exclusive preference for the (S)-forms of reticuline and scoulerine while the (R)-enantiomers which do not occur in this plant species were strictly discriminated. The carrier has a high affinity for (S)-reticuline with a K m=0.3 M. The rate of alkaloid uptake was 6 pmol·h-1·l-1 vacuole, and 0.03 mg alkaloid·mg-1 vacuolar protein were taken up. Transport was stimulated five-to seven-fold by ATP and was inhibited by the ATPase inhibitors N,N-dicyclohexylcarbodiimide and 4-4-diisothiocyanatostilbene-2,2 disulfonic acid, as well as by the protonophore carbonyl cyanide m-chlorophenylhydrazone. A number of alkaloids did not compete with labelled (S)-reticuline for uptake into vacuoles. The uptake system is absolutely specific for alkaloids indigenous to the plant from which the vacuoles were isolated. Slight modifications of the topography of an alkaloid molecule even with full retention of its electrical charge results in its exclusion. Alkaloid efflux was also shown to be mediated by a highly specific energy-dependent carrier. These results contradict the previously proposed ion-trap mechanism for alkaloid accumulation in vacuoles. A highly specific carrier-mediated and energy-dependent proton antiport system for alkaloid uptake and release is postulated.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DIDS 4-4-diisothiocyanatostilbene-2,2 disulfonic acid Dedicated to Professor Harry Beevers, Santa Cruz, on the occasion of his 60th birthday  相似文献   

15.
The Archaebacterium Haloferax volcanii concentrates K+ up to 3.6 M. This creates a very large K+ ion gradient of between 500- to 1,000-fold across the cell membrane. H. volcanii cells can be partially depleted of their internal K+ but the residual K+ concentration cannot be lowered below 1.5 M. In these conditions, the cells retain the ability to take up potassium from the medium and to restore a high internal K+ concentration (3 to 3.2 M) via an energy dependent, active transport mechanism with a K m of between 1 to 2 mM. The driving force for K+ transport has been explored. Internal K+ concentration is not in equilibrium with m suggesting that K+ transport cannot be accounted for by a passive uniport process. A requirement for ATP has been found. Indeed, the depletion of the ATP pool by arsenate or the inhibition of ATP synthesis by N,N-dicyclohexylcarbodiimide inhibits by 100% K+ transport even though membrane potential m is maintained under these conditions. By contrast, the necessity of a m for K+ accumulation has not yet been clearly demonstrated. K+ transport in H. volcanii can be compared with K+ transport via the Trk system in Escherichia coli.Abbreviations CCCP Carbonylcyanide m-chlorophenyl-hydrazone - DCCD N,N-dicyclohexylcarbodiimide - MES 2-[N-morpholino] ethane sulfonic acid - MOPS 3-[N-morpholino] propane sulfonic acid - TRIS Tris (hydroxymethyl) aminomethane - TPP tetraphenyl phosphonium  相似文献   

16.
The enzymatic conversion of formaldehyde to CH3S-CoM in crude extracts of Methanobacterium thermoautotrophicum was used as a means to investigate the methyl-tetrahydromethanopterin: HS-CoM methyltransferase reaction. All components necessary for formaldehyde conversion were shown to be present in a soluble protein fraction. This soluble cell fraction still contained a major amount of corrinoids. Apart from tetrahydromethanopterin no other soluble cofactors were required for formaldehyde conversion. The dependence of the system on catalytic amounts of ATP was shown to be specific. Several nucleoside triphosphates or ADP were unable to substitute for ATP. Remarkably, various strong reducing systems, especially titanium(III)citrate could replace ATP to a large extent. The ATP-dependent formaldehyde conversion to CH3S-CoM was inhibited in the presence of nitrous oxide, detergents or 2,3-dialdehyde-ATP. The results support a role for a corrinoid protein in the methyl-tetrahydromethanopterin: HS-CoM methyltransferase reaction at which ATP is involved in the activation of this protein, probably in the conversion of inactive B12a or B12r to active B12s.Abbreviations HS-CoM Coenzyme M, 2-mercaptoethanesulfonate - CH3S-CoM methylcoenzyme M, 2-(methylthio)ethanesulfonate - H4MPT 5,6,7,8-tetrahydromethanopterin - BES 2-bromoethanesulfonate - BCE boiled cell-free extract - DTT dithiothreitol - TCS 3,3,4,5-tetrachlorosalicylanilide - DNTB 2,2-dinitro-5,5-dithiobenzoic acid - TES N-tris(hydroxymethyl)methyl-2-aminoethanesulfonate - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - PIPES piperazine-N,N-bis[2-ethanesulfonic acid] - AMP-PNP 5-adenylyl imidophosphate  相似文献   

17.
J. Diez  A. Chaparro  J. M. Vega  A. Relimpio 《Planta》1977,137(3):231-234
In the green alga Ankistrodesmus braunii, all the activities associated with the nitrate reductase complex (i.e., NAD(P)H-nitrate reductase, NAD(P)H-cytochrome c reductase and FMNH2-or MVH-nitrate reductase) are nutritionally repressed by ammonia or methylamine. Besides, ammonia or methylamine promote in vivo the reversible inactivation of nitrate reductase, but not of NAD(P)H-cytochrome c reductase. Subsequent removal of the inactivating agent from the medium causes reactivation of the inactive enzyme. Menadione has a striking stimulation on the in vivo reactivation of the inactive enzyme. The nitrate reductase activities, but not the diaphorase activity, can be inactivated in vitro by preincubating a partially purified enzyme preparation with NADH or NADPH. ADP, in the presence of Mg2+, presents a cooperative effect with NADH in the in vitro inactivation of nitrate reductase. This effect appears to be maximum at a concentration of ADP equimolecular with that of NADH.Abbreviations ADP Adenosine-5-diphosphate - AMP Adenosine-5-monophosphate - ATP Adenosine-5-triphosphate - FAD Flavin adenine dinucleotide - FMNH2 Flavin adenine mononucleotide, reduced form - GDP Guanosine-5-diphosphate - MVH Methyl viologen, reduced form - NADH Nicotinamide adenine dinucleotide, reduced form - NADPH Nicotinamide adenine dinucleotide phosphate, reduced form  相似文献   

18.
Summary The influence of exogenous potassium hexacyanoferrate (III) (HCF III) on elongation of maize (Zea mays L.) coleoptile segments was investigated. Addition of HCF III led to a strong stimulation of growth both in the presence and absence of indole-3-acetic acid (IAA). The magnitude of growth stimulation was dependent on the presence of IAA, HCF III concentration, incubation time, and phase growth. The reduced form, potassium hexacyanoferrate (II), was without effect on growth. In the presence of HCF III, elongation was suppressed when coleoptile segments were treated with N,N-dicyclohexylcarbodiimide, cycloheximide or atebrine (quinacrine). The addition of HCF III stimulated the IAA-induced proton extrusion, and the e/H+ ratio decreased with incubation time. HCF III also strongly stimulated elongation ofAvena saliva L. coleoptile segments andGlycine max L. hypocotyl segments. These results suggested that a plasma membrane redox system (NADH oxidase type I) may be involved in the regulation of growth through the activity of the plasma membrane-bound ATPase.Abbreviations CH cycloheximide - DCCD N,N-dicyclohexylcarbodiimide - HCF III potassium hexacyanoferrate (III) (potassium ferricyanide) - HCF II potassium hexacyanoferrate (II) (potassium ferrocyanide) - IAA indole-3-acetic acid  相似文献   

19.
The filamentous cyanophyteNostoc muscorum A grew aseriately in light in a mineral salts (sugar-free) culture medium supplemented with adenosine 3:5-cyclic-monophosphate or N6, O2-dibutyryl adenosine 3:5-cyclic-monophosphate (1 mM). The aseriate morphology thus formed in the light on the 10th day following inoculation was similar to that formed in the dark after 20–30 days growth in cAMP-free medium containing glucose or sucrose. Inoculum previously grown in sucrose- or glucose-containing medium displayed aseriate morphology with lesser proliferation of coccoid cells as compared to inoculum grown in the absence of glucose or sucrose. cGMP, ADP, AMP and inhibitors of phosphodiesterase (theophylline and caffeine) did not have any effect on the persistence of aseriate morphology. However they stimulated cell division at the aseriate stage and delayed the release of hormogonia.Abbreviations cAMP adenosine 3:5-cyclic-monophosphate - db cAMP N6, O2-dibutyryl adenosine 3:5-cyclic-monophosphate - cGMP guanosine 3:5-cyclic-monophosphate - ATP adenosine 5-triphosphate - ADP adenosine5-diphosphate - AMP adenosine 5-monophosphate  相似文献   

20.
AMP-degrading pathways in Azotobacter vinelandii cells were investigated. AMP nucleosidase (EC 3.2.2.4) was rapidly synthesized and reached a maximum at 24 h, while the activity of 5-nucleotidase (EC 3.1.3.5) specific for AMP, which was negligible during the logarithmic phase of the growth, first appeared in 24 h-cultures, and reached a maximum after complete exhaustion of sucrose from the growth medium (70 h).Cell-free extracts of A. vinelandii of 48 h-cultures hydrolyzed AMP to ribose 5-phosphate and adenine in the presence of ATP, and adenine was deaminated to hypoxanthine. When ATP was excluded, AMP was dephosphorylated to adenosine, which was further metabolized to inosine, and finally to hypoxanthine. Hypoxanthine thus formed was reutilized for the salvage synthesis of IMP under the conditions where 5-phosphoribosyl 1-pyrophosphate was able to be supplied. These results suggest that the levels of ATP can determine the rate of AMP degradation by the AMP nucleosidase- and 5-nucleotidase-pathways. The role of ATP in the AMP degradation was discussed in relation to the regulatory properties of AMP nucleosidase, inosine nucleosidase (EC 3.2.2.2) and adenosine deaminase (EC 3.5.4.4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号