首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatitis A virus (HAV) is an important pathogen which has been responsible for many food-borne outbreaks. HAV-excreting food handlers, especially those with poor hygienic practices, can contaminate the foods which they handle. Consumption of such foods without further processing has been known to result in cases of infectious hepatitis. Since quantitative data on virus transfer during contact of hands with foods is not available, we investigated the transfer of HAV from artificially contaminated fingerpads of adult volunteers to pieces of fresh lettuce. Touching the lettuce with artificially contaminated fingerpads for 10 s at a pressure of 0.2 to 0.4 kg/cm(2) resulted in transfer of 9.2% +/- 0.9% of the infectious virus. The pretreatments tested to interrupt virus transfer from contaminated fingerpads included (i) hard-water rinsing and towel drying, (ii) application of a domestic or commercial topical agent followed by water rinsing and towel drying, and (iii) exposure to a hand gel containing 62% ethanol or 75% liquid ethanol without water rinsing or towel drying. When the fingerpads were treated with the topical agents or alcohol before the lettuce was touched, the amount of infectious virus transferred to lettuce was reduced from 9.2% to between 0.3 and 0.6% (depending on the topical agent used), which was a reduction in virus transfer of up to 30-fold. Surprisingly, no virus transfer to lettuce was detected when the fingerpads were rinsed with water alone before the lettuce was touched. However, additional experiments with water rinsing in which smaller volumes of water were used (1 ml instead of 15 ml) showed that the rate of virus transfer to lettuce was 0.3% +/- 0.1%. The variability in virus transfer rates following water rinsing may indicate that the volume of water at least in part influences virus removal from the fingerpads differently, a possibility which should be investigated further. This study provided novel information concerning the rate of virus transfer to foods and a model for investigating the transfer of viral and other food-borne pathogens from contaminated hands to foods, as well as techniques for interrupting such transfer to improve food safety.  相似文献   

2.
3.
The abilities of 10 hygienic hand-washing agents and tap water (containing approximately 0.5 ppm of free chlorine) to eliminate strain HM-175 of hepatitis A virus (HAV) and poliovirus (PV) type 1 (Sabin) were compared by using finger pad and whole-hand protocols with three adult volunteers. A mixture of the two viruses was prepared in a 10% suspension of feces, and 10 microliters of the mixture was placed on each finger pad. The inoculum was allowed to dry for 20 min, and the contaminated area was exposed to a hand-washing agent for 10 s, rinsed in tap water, and dried with a paper towel. In the whole-hand protocol, the hands were contaminated with 0.5 ml of the virus mixture, exposed for 10 s to a hand-washing agent, washed, and dried as described above. Tryptose phosphate broth was used to elute any virus remaining on the finger pads or hands. One part of the eluate was assayed directly for PV with FRhK-4 cells, while the other part was first treated with a PV-neutralizing serum and then assayed for HAV with the same cell line. The results are reported as mean percentages of reduction in PFU compared with the amount of infectious virus detectable after initial drying.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Human norovirus (huNoV) and hepatitis A virus (HAV) have been involved in several produce-associated outbreaks and identified as major food-borne viral etiologies. In this study, the survival of huNoV surrogates (murine norovirus [MNV] and Tulane virus [TV]) and HAV was investigated on alfalfa seeds during storage and postgermination. Alfalfa seeds were inoculated with MNV, TV, or HAV with titers of 6.46 ± 0.06 log PFU/g, 3.87 ± 0.38 log PFU/g, or 7.01 ± 0.07 log 50% tissue culture infectious doses (TCID50)/g, respectively. Inoculated seeds were stored for up to 50 days at 22°C and sampled during that storage period on days 0, 2, 5, 10, and 15. Following storage, virus presence was monitored over a 1-week germination period. Viruses remained infectious after 50 days, with titers of 1.61 ± 0.19 log PFU/g, 0.85 ± 0.21 log PFU/g, and 3.43 ± 0.21 log TCID50/g for MNV, TV, and HAV, respectively. HAV demonstrated greater persistence than MNV and TV, without a statistically significant reduction over 20 days (<1 log TCID50/g); however, relatively high levels of genomic copies of all viruses persisted over the testing time period. Low titers of viruses were found on sprouts and were located in all tissues as well as in sprout-spent water sampled on days 1, 3, and 6 following seed planting. Results revealed the persistence of viruses in seeds for a prolonged period of time, and perhaps of greater importance these data suggest the ease of which virus may transfer from seeds to sprouts and spent water during germination. These findings highlight the importance of sanitation and prevention procedures before and during germination.  相似文献   

5.
6.
High-Pressure Inactivation of Hepatitis A Virus within Oysters   总被引:3,自引:1,他引:2       下载免费PDF全文
Previous results demonstrated that hepatitis A virus (HAV) could be inactivated by high hydrostatic pressure (HHP) (D. H. Kingsley, D. Hoover, E. Papafragkou, and G. P. Richards, J. Food Prot. 65:1605-1609, 2002); however, direct evaluation of HAV inactivation within contaminated oysters was not performed. In this study, we report confirmation that HAV within contaminated shellfish is inactivated by HHP. Shellfish were initially contaminated with HAV by using a flowthrough system. PFU reductions of >1, >2, and >3 log10 were observed for 1-min treatments at 350, 375, and 400 megapascals, respectively, within a temperature range of 8.7 to 10.3°C. Bioconcentration of nearly 6 log10 PFU of HAV per oyster was achieved under simulated natural conditions. These results suggest that HHP treatment of raw shellfish will be a viable strategy for the reduction of infectious HAV.  相似文献   

7.
Millions of people suffer from foodborne diseases throughout the world every year, and the importance of food safety has grown worldwide in recent years. The aim of this study was to investigate the survival of hepatitis A virus (HAV) and viral surrogates of human norovirus (HuNoV) (bacteriophage MS2 and murine norovirus [MNV]) in food over time. HAV, MNV, and MS2 were inoculated onto either the digestive gland of oysters or the surface of fresh peppers, and their survival on these food matrices was measured under various temperature (4°C, 15°C, 25°C, and 40°C) and relative humidity (RH) (50% and 70%) conditions. Inoculated viruses were recovered from food samples and quantified by a plaque assay at predetermined time points over 2 weeks (0, 1, 3, 7, 10, and 14 days). Virus survival was influenced primarily by temperature. On peppers at 40°C and at 50% RH, >4- and 6-log reductions of MNV and HAV, respectively, occurred within 1 day. All three viruses survived better on oysters. In addition, HAV survived better at 70% RH than at 50% RH. The survival data for HAV, MS2, and MNV were fit to three different mathematical models (linear, Weibull, and biphasic models). Among them, the biphasic model was optimum in terms of goodness of fit. The results of this study suggest that major foodborne viruses such as HAV and HuNoV can survive over prolonged periods of time with a limited reduction in numbers. Because a persistence of foodborne virus on contaminated foods was observed, precautionary preventive measures should be performed.  相似文献   

8.
Cryptosporidium parvum oocysts were recovered by immunomagnetic separation from six artificially contaminated foods. Two DNA isolation methods were subsequently evaluated by PCR. The FTA Concentrator-PS filter provided rapid and reproducible detection, although variability increased at lower inoculum levels (88% and 15% detection in high- and low-inoculum-level samples, respectively). Total DNA extraction generated consistent results at all oocyst levels but resulted in longer analysis time (100% and 59% detection in high- and low-inoculum-level samples, respectively). Also reflected in this study was that the matrix played an important role in the ability to recover oocysts, as sample turbidity, pH, and PCR inhibitors all influenced detection.  相似文献   

9.
We report a method for detecting Giardia duodenalis cysts on lettuce, which we subsequently use to examine salad products for the presence of Giardia cysts and Cryptosporidium oocysts. The method is based on four basic steps: extraction of cysts from the foodstuffs, concentration of the extract and separation of the cysts from food materials, staining of the cysts to allow their visualization, and identification of cysts by microscopy. The concentration and separation steps are performed by centrifugation, followed by immunomagnetic separation using proprietary kits. Cyst staining is also performed using proprietary reagents. The method recovered 46.0% ± 19.0% (n = 30) of artificially contaminating cysts in 30 g of lettuce. We tested the method on a variety of commercially available natural foods, which we also seeded with a commercially available internal control, immediately prior to concentration of the extract. Recoveries of the Texas Red-stained Giardia cyst and Cryptosporidium oocyst internal controls were 36.5% ± 14.3% and 36.2% ± 19.7% (n = 20), respectively. One natural food sample of organic watercress, spinach, and rocket salad contained one Giardia cyst 50 g−1 of sample as an indigenous surface contaminant.  相似文献   

10.
The exceptional stability of enteric viruses probably resides in their capsids. The capsid functions of inactivated human picornaviruses and feline calicivirus (FCV) were determined. Viruses were inactivated by UV, hypochlorite, high temperature (72°C), and physiological temperature (37°C), all of which are pertinent to transmission via food and water. Poliovirus (PV) and hepatitis A virus (HAV) are transmissible via water and food, and FCV is the best available surrogate for the Norwalk-like viruses, which are leading causes of food-borne and waterborne disease in the United States. The capsids of all 37°C-inactivated viruses still protected the viral RNA against RNase, even in the presence of proteinase K, which contrasted with findings with viruses inactivated at 72°C. The loss of ability of the virus to attach to homologous cell receptors was universal, regardless of virus type and inactivation method, except for UV-inactivated HAV, and so virus inactivation was almost always accompanied by the loss of virus attachment. Inactivated HAV and FCV were captured by homologous antibodies. However, inactivated PV type 1 (PV-1) was not captured by homologous antibody and 37°C-inactivated PV-1 was only partially captured. The epitopes on the capsids of HAV and FCV are evidently discrete from the receptor attachment sites, unlike those of PV-1. These findings indicate that the primary target of UV, hypochlorite, and 72°C inactivation is the capsid and that the target of thermal inactivation (37°C versus 72°C) is temperature dependent.  相似文献   

11.
This study was conducted to determine whether enteric viruses (adenovirus, rotavirus, and hepatitis A virus) added to cotton cloth swatches survive the wash cycle, the rinse cycle, and a 28-min permanent press drying cycle as commonly practiced in households in the United States. Detergent with and without bleach (sodium hypochlorite) was added to washing machines containing sterile and virus-inoculated 58-cm2 swatches, 3.2 kg of cotton T-shirts and underwear, and a soiled pillowcase designed to simulate the conditions (pH, organic load, etc.) encountered in soiled laundry. The most important factors for the reduction of virus in laundry were passage through the drying cycle and the addition of sodium hypochlorite. Washing with detergent alone was not found to be effective for the removal or inactivation of enteric viruses, as significant concentrations of virus were found on the swatches (reductions of 92 to 99%). It was also demonstrated that viruses are readily transferred from contaminated cloths to uncontaminated clothes. The use of sodium hypochlorite reduced the number of infectious viruses on the swatches after washing and drying by at least 99.99%. Laundering practices in common use in the United States do not eliminate enteric and respiratory viruses from clothes. The use of bleach can further reduce the numbers of enteric viruses in laundry.  相似文献   

12.
Rhinoviruses can survive on environmental surfaces for several hours under ambient conditions. Hands can readily become contaminated after contact with such surfaces, and self-inoculation may lead to infection. Whereas hand washing is crucial in preventing the spread of rhinovirus colds, proper disinfection of environmental surfaces may further reduce rhinovirus transmission. In this study, the capacities of Lysol Disinfectant Spray (0.1% o-phenylphenol and 79% ethanol), a domestic bleach (6% sodium hypochlorite diluted to give 800 ppm of free chlorine), a quaternary ammonium-based product (7.05% quaternary ammonium diluted 1:128 in tap water), and a phenol-based product (14.7% phenol diluted 1:256 in tap water) were compared in interrupting the transfer of rhinovirus type 14 from stainless steel disks to fingerpads of human volunteers upon a 10-s contact at a pressure of 1 kg/cm2. Ten microliters of the virus, suspended in bovine mucin (5 mg/ml), was placed on each disk, and the inoculum was dried under ambient conditions; the input number on each disk ranged from 0.5 x 10(5) to 2.1 x 10(6) PFU. The dried virus was exposed to 20 microliters of the test disinfectant. The Lysol spray was able to reduce virus infectivity by > 99.99% after a contact of either 1 or 10 min, and no detectable virus was transferred to fingerpads from Lysol-treated disks. The bleach (800 ppm of free chlorine) reduced the virus titer by 99.7% after a contact time of 10 min, and again no virus was transferred from the disks treated with it.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Numerous outbreak investigations and case-control studies for campylobacteriosis have provided evidence that handling Campylobacter-contaminated chicken products is a risk factor for infection and illness. There is currently extremely limited quantitative data on the levels of Campylobacter cross-contamination in the kitchen, hindering risk assessments for the pathogen commodity combination of Campylobacter and chicken meat. An exposure assessment needs to quantify the transfer of the bacteria from chicken to hands and the kitchen environment and from there onto ready-to-eat foods. We simulated some typical situations in kitchens and quantified the Campylobacter transfer from naturally contaminated chicken parts most commonly used in Germany. One scenario simulated the seasoning of five chicken legs and the reuse of the same plate for cooked meat. In another, five chicken breast filets were cut into small slices on a wooden board where, without intermediate cleaning, a cucumber was sliced. We also investigated the transfer of the pathogen from chicken via hands to a bread roll. The numbers of Campylobacter present on the surfaces of the chicken parts, hands, utensils, and ready-to-eat foods were detected by using Preston enrichment and colony counting after surface plating on Karmali agar. The mean transfer rates from legs and filets to hands were 2.9 and 3.8%. The transfer from legs to the plate (0.3%) was significantly smaller (P < 0.01) than the percentage transferred from filets to the cutting board and knife (1.1%). Average transfer rates from hands or kitchen utensils to ready-to-eat foods ranged from 2.9 to 27.5%.  相似文献   

14.
Hepatitis A virus (HAV) is a food-borne enteric virus responsible for outbreaks of hepatitis associated with shellfish consumption. The objectives of this study were to determine the thermal inactivation behavior of HAV in blue mussels, to compare the first-order and Weibull models to describe the data, to calculate Arrhenius activation energy for each model, and to evaluate model efficiency by using selected statistical criteria. The times required to reduce the population by 1 log cycle (D-values) calculated from the first-order model (50 to 72°C) ranged from 1.07 to 54.17 min for HAV. Using the Weibull model, the times required to destroy 1 log unit (tD = 1) of HAV at the same temperatures were 1.57 to 37.91 min. At 72°C, the treatment times required to achieve a 6-log reduction were 7.49 min for the first-order model and 8.47 min for the Weibull model. The z-values (changes in temperature required for a 90% change in the log D-values) calculated for HAV were 15.88 ± 3.97°C (R2, 0.94) with the Weibull model and 12.97 ± 0.59°C (R2, 0.93) with the first-order model. The calculated activation energies for the first-order model and the Weibull model were 165 and 153 kJ/mol, respectively. The results revealed that the Weibull model was more appropriate for representing the thermal inactivation behavior of HAV in blue mussels. Correct understanding of the thermal inactivation behavior of HAV could allow precise determination of the thermal process conditions to prevent food-borne viral outbreaks associated with the consumption of contaminated mussels.  相似文献   

15.
A total of 825 samples of retail raw meats (chicken, turkey, pork, and beef) were examined for the presence of Escherichia coli and Salmonella serovars, and 719 of these samples were also tested for Campylobacter spp. The samples were randomly obtained from 59 stores of four supermarket chains during 107 sampling visits in the Greater Washington, D.C., area from June 1999 to July 2000. The majority (70.7%) of chicken samples (n = 184) were contaminated with Campylobacter, and a large percentage of the stores visited (91%) had Campylobacter-contaminated chickens. Approximately 14% of the 172 turkey samples yielded Campylobacter, whereas fewer pork (1.7%) and beef (0.5%) samples were positive for this pathogen. A total of 722 Campylobacter isolates were obtained from 159 meat samples; 53.6% of these isolates were Campylobacter jejuni, 41.3% were Campylobacter coli, and 5.1% were other species. Of the 212 chicken samples, 82 (38.7%) yielded E. coli, while 19.0% of the beef samples, 16.3% of the pork samples, and 11.9% of the turkey samples were positive for E. coli. However, only 25 (3.0%) of the retail meat samples tested were positive for Salmonella. Significant differences in the bacterial contamination rates were observed for the four supermarket chains. This study revealed that retail raw meats are often contaminated with food-borne pathogens; however, there are marked differences in the prevalence of such pathogens in different meats. Raw retail meats are potential vehicles for transmitting food-borne diseases, and our findings stress the need for increased implementation of hazard analysis of critical control point (HACCP) and consumer food safety education efforts.  相似文献   

16.
A nucleic acid sequence-based amplification (NASBA) assay in combination with a molecular beacon was developed for the real-time detection and quantification of hepatitis A virus (HAV). A 202-bp, highly conserved 5′ noncoding region of HAV was targeted. The sensitivity of the real-time NASBA assay was tested with 10-fold dilutions of viral RNA, and a detection limit of 1 PFU was obtained. The specificity of the assay was demonstrated by testing with other environmental pathogens and indicator microorganisms, with only HAV positively identified. When combined with immunomagnetic separation, the NASBA assay successfully detected as few as 10 PFU from seeded lake water samples. Due to its isothermal nature, its speed, and its similar sensitivity compared to the real-time RT-PCR assay, this newly reported real-time NASBA method will have broad applications for the rapid detection of HAV in contaminated food or water.  相似文献   

17.
18.
By using recently developed cultivation and assay systems, currently available methods for concentrating enteric viruses from drinking water by adsorption to and subsequent elution from microporous filters followed by organic flocculation were evaluated for their ability to recover hepatitis A virus (HAV). Cell culture-adapted HAV (strain HM-175) in seeded tapwater was efficiently adsorbed by both electronegative (Filterite) and electropositive (Virosorb 1MDS) filters at pH and ionic conditions previously used for other enteric viruses. Adsorbed HAV was efficiently eluted from these filters by beef extract eluents at pH 9.5. Eluted HAV was further concentrated efficiently by acid precipitation (organic flocculation) of eluents containing beef extract made from powdered, but not paste, sources. By using optimum adsorption conditions for each type of filter, HAV was concentrated greater than 100-fold from samples of seeded tapwater, with about 50% recovery of the initial infectious virus added to the samples. The ability to recover and quantify HAV in contaminated drinking water with currently available methods should prove useful in further studies to determine the role of drinking water in HAV transmission.  相似文献   

19.
By using recently developed cultivation and assay systems, currently available methods for concentrating enteric viruses from drinking water by adsorption to and subsequent elution from microporous filters followed by organic flocculation were evaluated for their ability to recover hepatitis A virus (HAV). Cell culture-adapted HAV (strain HM-175) in seeded tapwater was efficiently adsorbed by both electronegative (Filterite) and electropositive (Virosorb 1MDS) filters at pH and ionic conditions previously used for other enteric viruses. Adsorbed HAV was efficiently eluted from these filters by beef extract eluents at pH 9.5. Eluted HAV was further concentrated efficiently by acid precipitation (organic flocculation) of eluents containing beef extract made from powdered, but not paste, sources. By using optimum adsorption conditions for each type of filter, HAV was concentrated greater than 100-fold from samples of seeded tapwater, with about 50% recovery of the initial infectious virus added to the samples. The ability to recover and quantify HAV in contaminated drinking water with currently available methods should prove useful in further studies to determine the role of drinking water in HAV transmission.  相似文献   

20.
A large number of incidents of food poisoning have been linked to undercooked meat products. The use of mathematical modelling to describe heat transfer within foods, combined with data describing bacterial thermal inactivation, may prove useful in developing safer food products while minimizing thermal overprocessing. To examine this approach, cylindrical agar blocks containing immobilized bacteria (Salmonella typhimurium and Brochothrix thermosphacta) were used as a model system in this study. The agar cylinders were subjected to external conduction heating by immersion in a water bath. They were then incubated, sliced open, and examined by image analysis techniques for regions of no bacterial growth. A finite-difference scheme was used to model thermal conduction and the consequent bacterial inactivation. Bacterial inactivation rates were modelled with values for the time required to reduce bacterial number by 90% (D) and the temperature increase required to reduce D by 90% taken from the literature. Model simulation results agreed well with experimental results for both bacteria, demonstrating the utility of the technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号