首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 868 毫秒
1.
Summary Exposure of germlings of Allomyces neo-moniliformis to colchicine for 0 to 5 min after zoospore encystment was found to block 30% of germlings derived from flagellated zoospores and 55% of germlings derived from deflagellated zoospores in C-metaphase configurations at the first mitotic division. The zoospore lacks a pool of colchicine binding protein, and protein synthesis is absent during the time when colchicine first becomes effective in inducing C-metaphase. From these observations it is concluded that the microtubule subunit protein of the spindle apparatus of the first mitotic division to a large extent is derived from the depolymerization of the cytoplasmic microtubules of the zoospore. GTP, Mg2+, and ATP were observed to be antagonistic to the action of colchicine in vivo. It is suggested that these compounds may compete with colchicine for binding to the subunit protein in vivo. Germlings derived from flagellated zoospores are appreciably less subject to the action of colchicine in the presence of the antagonistic compounds than are germlings derived from deflagellated zoospores. This differential sensitivity to colchicine is interpreted as reflecting a difference in the quantity of microtubule subunit protein present at the time of exposure to colchicine.  相似文献   

2.
Regulation of Protein Synthesis in Zoospores of Blastocladiella   总被引:3,自引:1,他引:2       下载免费PDF全文
The factors responsible for the regulation of protein synthesis in the zoospores of Blastocladiella emersonii were studied by means of cell fractionation and in vitro assays. Charged transfer ribonucleic acid (tRNA) and aminoacyl-tRNA synthetases were found both inside the membrane-bound, ribosomal nuclear cap, and in the extracap cytoplasm. Ribosomes isolated from zoospore nuclear caps in low salt buffer failed to support polyuridylic acid-dependent phenylalanine incorporation. After washing with high salt buffer, the cap ribosomes were equivalent in activity to similarly prepared plant ribosomes. Both the high-salt wash from cap ribosomes and the extracap supernatant fraction contained an unidentified material which inhibited aminoacyl-tRNA binding and peptide bond formation by ribosomes. Ribosomal binding of polyuridylic acid was not inhibited. Washed cap ribosomes supported very low incorporation rates without added messenger RNA, and were highly dependent upon added poly U for phenylalanine incorporation, indicating a low level of messenger in nuclear caps. It is concluded that enclosure of the ribosomes in the nuclear cap does not in itself prevent protein synthesis, and that the lack of activity may be due to the presence of a ribosome inhibitor.  相似文献   

3.
Summary The water expulsion vacuole (WEV) in zoospores ofPhytophthora nicotianae and other members of the Oomycetes is believed to function in cell osmoregulation. We have used videomicroscopy to analyse the behaviour of the WEV during zoospore development, motility and encystment inP. nicotianae. After cleavage of multinucleate sporangia, the WEV begins to pulse slowly but soon attains a rate similar to that seen in motile zoospores. In zoospores, the WEV has a mean cycle time of 5.7 ± 0.71 s. The WEV continues to pulse at this rate until approximately 4 min after the onset of encystment. At this stage, pulsing slows progressively until it becomes undetectable. The commencement of WEV operation in sporangia coincides with the reduction of zoospore volume prior to release from the sporangium. Disappearance of the WEV during encystment occurs as formation of a cell wall allows the generation of turgor pressure in the cyst. As in other organisms, the WEV inP. nicotianae zoospores consists of a central bladder surrounded by a vesicular and tubular spongiome. Immunolabelling with a monoclonal antibody directed towards vacuolar H+-ATPase reveals that this enzyme is confined to membranes of the spongiome and is absent from the bladder membrane or zoospore plasma membrane. An antibody directed towards plasma membrane H+-ATPase shows the presence of this ATPase in both the bladder membrane and the plasma membrane over the cell body but not the flagella. Analysis of ATPase activity in microsomal fractions fromP. nicotianae zoospores has provided information on the biochemical properties of the ATPases in these cells and has shown that they are similar to those in true fungi. Inhibition of the vacuolar H+-ATPase by potassium nitrate causes a reduction in the pulse rate of the WEV in zoospores and leads to premature encystment. These results give support to the idea that the vacuolar H+-ATPase plays an important role in water accumulation by the spongiome in oomycete zoospores, as it does in other protists.Abbreviations BMM butyl methylmethacrylate - F fix 4% formaldehyde fixation - GF fix 4% formaldehyde and 0.2% glutaraldehyde fixation - V-ATPase vacuolar H+-ATPase - WEV water expulsion vacuole  相似文献   

4.
Cells of Chlamydomonas reinhardi Dangeard were grown synchronouslyunder a 12 hr light-12 hr dark regime. Time courses of nucleardivision, chloroplast division, "apparent cytokinesis" and zoosporeliberation were followed during the vegetative cell cycle inthe synchronous culture. Liberation of zoospores occurred atabout 23–24 hr after the beginning of the light periodat 25°C. Four zoospores were produced per mother cell underthe conditions used. At lower temperatures, the process of zoosporeliberation as well as length of the cell cycle was markedlyprolonged, but the number of zoospores produced per mother cellwas approximately the same. At different light intensities,lengths of the cell cycle were virtually the same, while thenumber of zoospores liberated was larger at higher rather thanat lower light intensities. During the dark period, nuclear division, chloroplast divisionand apparent cytokinesis took place, in diis order, and proceededless synchronously than did the process of zoospore liberation.When the 12 hr dark period was replaced with a 12 hr light periodduring one cycle, the time of initiation as well as the durationof zoospore liberation was litde affected in most cases, whereasnuclear division, chloroplast division and apparent cytokinesiswere considerably accelerated by extended illumination. Whenalgal cells which had been exposed to light for 24 hr were furtherincubated in the light, zoospore liberation started much earlierand proceeded far less synchronously, compared with that under12 hr light-12 hr dark alternation. (Received October 12, 1970; )  相似文献   

5.
Summary The leucine-lysine synchronization technique of Dill and Fuller (1970) has been further refined and used to study various biosynthetic events of pre-mitotic germlings of Allomyces neo-moniliformis (the time of DNA replication, RNA synthesis, and protein synthesis), and various morphogenetic changes (germling development, nuclear cap breakdown, and the first mitotic nuclear division). The degree of synchrony induced in a population of germlings appears to be determined by the time when the zoospores are induced to encyst and germinate rather than by the duration of the swimming period of the zoospore. DNA replication, nuclear cap breakdown, early protein synthesis, and morphogenetic development appear to occur prior to messenger RNA synthesis in developing thalli and thus would be under the control of pre-existing messenger RNA. The degree of synchrony of particular morphogenetic or biosynthetic developmental changes induced in a population of A. neo-moniliformis germlings must be determined for each aspect of development which is to be studied.  相似文献   

6.
Hardham  A. R.  Suzaki  E. 《Protoplasma》1986,133(2-3):165-173
Summary Only two of a number of macromolecules that bind to the surface of zoospores of the dieback fungus,Phytophthora cinnamomi, induce encystment when added to a suspension of actively swimming zoospores. One, the lectin Concanavalin A (ConA), binds to the entire surface of the zoospores including the surface of both flagella. Within 10 minutes more than 70% of the cells have encysted in the presence of 5 g/ml ConA. This encystment is inhibited by preincubation of the lectin with its hapten sugar, -methyl-D-mannoside. The other effective molecule, a monoclonal antibody designated Zf-1, is one of 35 that have been raised to components on the surface of zoospores and cysts ofP. cinnamomi. The antigen for Zf-1 occurs only on the surface of the two flagella. Purified Zf-1 at 15 g/ml causes encystment of 75% of the zoospores in 13minutes. To show that the induction of encystment by these two probes is not due simply to the presence of protein either in solution or bound to the zoospore a number of other proteins were tested, including other antibodies that bind to the zoospore surface. None of these other molecules caused encystment even at concentrations greater than 200 g/ml. The results are consistent with the surface components that bind ConA and Zf-1 being involved in the critical step of triggering encystment at the surface of a potential host during infection.  相似文献   

7.
Summary Lagenidium giganteum (Oomycetes: Lagenidiales), a facultative parasite of mosquito larvae, infects the larval stage of most species of mosquitoes and a very limited number of alternate hosts. Host infection by this and other members of Oomycetes is initiated by motile, laterally biflagellate zoospores. Chemical bases for the various degrees of host specificity exhibited by these parasites is not known, but presumably involves receptors on the zoospore surface recognizing compounds either secreted by or on the surface of their hosts. Surface topography had no detectable effect onL. giganteum encystment or appressorium formation. Scanning electron microscopy documented the detachment of flagella during zoospore encystment. Bulbous knobs at the basal end of the detached flagellum were interpreted as encysting zoospores dropping the axoneme and/or the basal body and associated structures to which flagella are attached. Multiple signals appear to be involved in the initial steps ofL. giganteum host invasion. Zoospores of this parasite did not encyst on powdered preparations of chitin or chitosan (deacetylated chitin). Upon dissolution of chitosan in dilute acid followed by drying these solutions to form thin, transparent films, zoospores readily encysted. The degree of reacetylation of these films and the spacing of acetylated and deacetylated residues had no significant effect on zoospore encystment. Zoospores of a strain ofLagenidium myophilum isolated from marine shrimp, that also infects mosquito larvae, encysted on chitosan films. No encystment of spores of the plant parasitePhytophthora capsici was observed on chitin or chitosan films. Simulation of cuticle sclerotization by incubating chitosan films with different catecholamines and tyrosinase significantly reduced zoospore encystment. Zoospores that encysted on chitosan films did not germinate in distilled water. Germination could be induced by adding microgram quantities of bovine serum albumin or proteins secreted by motile zoospores into the water, and to a lesser degree by some amino acids, but not by various cations. Zoospores encysted and germinated on the pupal stage of some mosquito species. Appressoria were occasionally formed, but most subsequently sent out another mycelial branch, apparently without attempting to pierce the pupal cuticle. Methylation of pupal exuviae with ethereal diazomethane or methanol/HCl significantly increased zoospore encystment. Modification of chitin by catecholamines, lipids and protein on the epicuticular larval surface all affected host invasion.Abbreviations BSA bovine serum albumin - CID collision-induced dissociation - DOPA 3,4-dihydroxyphenylalanine - ESI-MS electrospray mass spectrometry - ESI-MS/MS tandem electrospray mass spectrometry - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - WGA wheat germ agglutinin - ZAP zoospore aggregation pheromone  相似文献   

8.
Summary Vigorous agitation caused the zoospores of Phytophthora palmivora to undergo rapid synchronous encystment. The rate of encystment was determined by counting the number of cells with an alkali-resistant cyst wall. 50% of the zoospores formed an alkali-resistant cyst wall within 60 sec of agitation; after 120 sec, essentially all zoospores had encysted. The rate of spontaneous encystment in nonagitated suspensions was much slower. The flagella of nearly all zoospores disappeared within 30 sec of agitation, i.e. prior to the formation of an alkali-resistant cyst wall. Zoospores depend on internal reserves for synthesizing their cyst walls. Approximately 70% of the total carbohydrate in motile zoospores was extracted with water after treating the cells with 70% éthnol. During synchronous encystment, this carbohydrate fraction composed largely of glucans decreased markedly while the insoluble carbohydrate fraction (cyst wall glucan) increased correspondingly. Clearly, the conversion of cytoplasmic glucan into wall glucan plays a major role in zoospore encystment.  相似文献   

9.
The infection of roots by the pathogenic Oomycete Pythium aphanidermatuminvolves interactions between the fungal zoospores and rootsurface mucilage polysaccharides. After initial recognitionat the root surface the zoospores are triggered to encyst duringwhich adhesive glycoproteins are secreted followed by a fibrillarcyst wall. In this paper a simple in vitro assay has been usedto assess the ability of a variety of macromolecules to inducezoospore encystment. Mucilage polysaccharides of the cress rootsurface trigger encystment. Whole mucilage was fractionatedby gel filtration and a fraction low in uronic acid, containing5% fucose, was shown to be more effective in triggering encystmentthan a uronic acid-rich fraction. Encystment can also be inducedby commercial pectin. The lectin Con A, and PA1, one of a rangeof monoclonal antibodies specific for zoospore surface antigens,also triggered encystment. In Western blotting experiments PA1recognizes protein epitopes of a 75 kDa surface antigen. Theresults suggest that at least one mechanism of zoospore triggeringmay involve a specific zoospore surface receptor. Key words: Pythium aphanidermatum, recognition, encystment, zoospore, mucilage, root, monoclonal antibodies, polysaccharides  相似文献   

10.
Summary The process of zoospore maturation and encystment inP. proliferum was studied by electron microscopy. General ultrastructural features of the mature, swimming zoospore were found to be similar to those previously described for other oomycetes in both the attachment and ultrastructure of the flagella as well as the type and distribution of cellular organelles. Associated with extensive areas of RER in the mature zoospores were unusual, electrondense, bar-like structures. These structures were found in the groove region of young zoospores and at the periphery of encysting zoospores. Their possible function is discussed. The five main types of vesicles observed during encystment, as seen grouped in this study, along with the vesicles described in previous studies of oomycete encystment, were in table form and individually discussed. Interesting correlations appear to exist in the types of vesicles that are present within the oomycetes studied thusfar.  相似文献   

11.
As part of its pathogenic life cycle, Phytophthora capsici disperses to plants through a motile zoospore stage. Molecules on the zoospore surface are involved in reception of environmental signals that direct preinfection behavior. We developed a phage display protocol to identify peptides that bind to the surface molecules of P. capsici zoospores in vitro. The selected phage-displayed peptides contained an abundance of polar amino acids and proline but were otherwise not conserved. About half of the selected phage that were tested concomitantly induced zoospore encystment in the absence of other signaling agents. A display phage was shown to bind to the zoospore but not to the cyst form of P. capsici. Two free peptides corresponding to active phage were similarly able to induce encystment of zoospores, indicating that their ability to serve as signaling ligands did not depend on their exact molecular context. Isolation and subsequent expression of peptides that act on pathogens could allow the identification of receptor molecules on the zoospore surface, in addition to forming the basis for a novel plant disease resistance strategy.  相似文献   

12.
Patulin exhibits both cytotoxic and cytopathic effects on cultured Chang liver cells. The LD50 found was 1.85 mug per ml of patulin. Effects on growth were observed with as little as 0.1 mug per ml of patulin; a 50% reduction in growth was observed at 0.38 mug per ml of patulin. Using a challenge dose of 2.5 mug per ml of patulin, the cytotoxic effect was reversible after an exposure of 10 min, but was not reversible after 20 min. Protein synthesis was depressed after 60 min and RNA synthesis after 20 min of contact with patulin. Neither protein nor RNA synthesis was completely inhibited after 260 min.  相似文献   

13.
LéJohn, Herbert B. (Purdue University, Lafayette, Ind.), and James S. Lovett. Ribonucleic acid and protein synthesis in Rhizophlyctis rosea zoospores. J. Bacteriol. 91:709-717. 1966.-The uniflagellate zoospores of Rhizophlyctis rosea display active motility and a high endogenous respiratory metabolism, but neither growth nor net ribonucleic acid (RNA) or protein synthesis can be measured by ordinary procedures. Nevertheless, synthesis can be detected with isotopic precursors. Uracil-C(14) is incorporated slowly into both the soluble and ribosomal RNA. Analysis of zoospore extracts (on diethylaminoethyl cellulose columns or sucrose gradients) after various periods of labeling suggested that most of the uracil incorporation represents slow synthesis of ribosomal precursor RNA and, ultimately, ribosomes. Actinomycin D caused an 80% inhibition of uracil incorporation. The most rapidly labeled RNA was susceptible to extensive degradation in cells treated with actinomycin, but the percentage of stable RNA increased with the time of incorporation before addition of the antibiotic. Neither the effects of actinomycin nor the results of chase experiments have established unequivocally the existence of turnover or the presence of a short-lived "messenger" fraction in motile spores. Both leucine and methionine were slowly incorporated into a spectrum of cellular proteins. The methyl group of C(14)-methylmethionine also served as a methyl donor for the methylation of soluble RNA but not of ribosomal RNA. The observations that some of the newly synthesized RNA and protein occur in the intact 82S ribosomes and that actinomycin inhibits the low level of protein synthesis provide some indirect evidence for a very low rate of "messenger" synthesis and turnover in zoospores.  相似文献   

14.
Summary Zoospores of the mosquito pathogenic fungusLagenidium giganteum preferentially attach to and encyst on the cuticular surface of the immature stages of many species of mosquitoes as the initial step in the infection process. Recognition by zoospores of specific chemical or physical signals on the cuticular surface triggers attachment. A number of compounds likely to be present on the surface of mosquito larvae were evaluated for efficacy in eliciting zoospore encystment. Free amino acids and oligomers, a number of phenolic and polyphenolic compounds and most carbohydrates did not induce encystment at concentrations less than 500 g/ml. Colloidal chitin and chitin films were also ineffective as was O-carboxy-methylchitin; however, glycol chitin and glycol chitosan induced rapid encystment at concentrations at or below 1 g/ml. Zoospores also attached to and encysted in great numbers on fibers of oxycellulose, but not on cellulose. Concanavalin A was the only lectin which induced encystment at concentrations less than 10 g/ml, which suggests that a glycoprotein with terminal mannose and/or glucose residues is involved in encystment. A number of phenols were metabolized by peroxidase on the zoospore surface. Addition of hydrogen peroxide to zoospore suspensions reduced the time needed to induce zoospore encystment by some phenols; however, there was no consistent relationship between the presence or absence of this synergistic effect and the ability ofL. giganteum peroxidase to metabolize a given substrate. The sterol-binding compound amphotericin B induced immediate encystment at 3.5 g/ml, suggesting that sterols, which are required for the induction of zoosporogenesis, were present on the zoospore membrane.  相似文献   

15.
Cyclic nucleotide-independent protein kinase (EC 2.7.1.37) activity was found in the nuclear cap organelle, within which ribosomes of zoospores of Blastocladiella emersonii are sequestered. Two protein kinase activities were resolved from the high-salt wash fraction of zoospore ribosomes by selective adsorption to DEAE-cellulose. Both enzymes phosphorylated in vitro a 32,000 Mr protein of the 40S ribosomal subunit. Phosphorylation of this ribosomal protein, which exhibits electrophoretic properties similar to those of mammalian ribosomal protein S6, was also observed in vivo in 32P-labeled zoospores.  相似文献   

16.
Prostaglandins E1, E2, and F2alpha (PGE1, PGE2, and PGF2alpha) were shown to inhibit the growth of mouse leukaemia lymphoblasts L5178Y in culture. The effects of PGE1 and PGE2 were greater than that of PGF2alpha. PGE1 and PGE2, at the concentration of 100 mug per ml showed significant inhibitory effects on the rates of incorporation of tritiated thymidine, uridine and leucine. At concentrations of 50 and 25 mug per ml, there was significant inhibition of thymidine and uridine incorporation, but not of leucine, PGF2alpha showed significant inhibition of thymidine and uridine incorporation but not leucine incorporation, in all 3 concentrations studied (100, 50, and 25 mug/ml). The ability of the cells to form colonies in soft agar was significantly inhibited by PGE1 and PGE2 at concentrations as low as 1-8 mug/ml. For F2alpha, however, a concentration as high as 56mug/ml was required to show inhibitory effect, but at 1-8 mug/ml it was found to be stimulatory.  相似文献   

17.
Structural changes during cell wall formation by populations of semisynchronously germinating zoospores were studied in the water mold Allomyces macrogynus. Fluorescence microscopy using Calcofluor white ST (which binds to -1,4-linked glycans) demonstrated that Calcofluor-specific material was deposited around most cells between 2–10 min after the induction of encystment (beginning when a wall-less zoospore retracts its flagellum and rounds up). During the first 15 min of encystment there was a progressive increase in fluorescence intensity. Ultrastructural analysis of encysting cells showed that within 2–10 min after the induction of encystment small vesicles 35–70 nm diameter were present near the spore surface, and some were in the process of fusing with the plasma membrane. The fusion of vesicles with the zoospore membrane was concomitant with the appearance of electron-opaque fibrillar material outside the plasma membrane. Vesicles similar to those near the spore surface were found within the gamma () particles of encysting cells. These particles had a crystalline inclusion within the electron-opaque matrix. During the period of initial cyst cell wall formation numerous vesicles appeared to arise at the crystal-matrix interface. Approximately 15–20 min was required for the cell wall to be formed. We suggest that the initial response of the zoospore to induction of encystment is the formation of a cell wall mediated by the fusion of cytoplasmic vesicles with the plasma membrane.Non-Standard Abbreviations GlcNac N-Acetylglucosamine - DS sterile dilute salts solution - PYG peptone-yeast extract-glucose broth  相似文献   

18.
Blastocladiella emersonii zoospores are not encased by a cell wall and do not detectably synthesize or contain chitin; accompanying de novo cell wall formation during zoospore encystment, chitin rapidly accumulates and is incorporated into the cell wall. Essential for understanding this abrupt change in chitin synthesis is the location of zoospore chitin synthetase. The enzyme has previously been reported to the sequestered with distinctive cytoplasmic organelles (gamma particles) characteristic for the zoospore cell type. Using similar differential and equilibrium density centrifugation procedures to those reported previously, we have observed the vast majority of zoospore homogenate chitin synthetase activity in fractions distinct from the gamma particle-enriched fractions. Over 90% of the homogenate enzyme activity could be recovered in a sucrose buoyant density region (1.14–1.18 g/ml) containing membranous elements and well separated from the region enriched for gamma particles (1.30–1.34 g/ml). When zoospores were surface-labelled with [3H]concanavalin A prior to homogenization, the buoyant density regions of radioactivity and of chitin synthetase activity exhibited nearly complete coincidence. At least the bulk of zoospore chitin synthetase appears to be located at the plasma membrane, rather than in gamma particles.  相似文献   

19.
Addepalli MK  Fujita Y  Kanai K 《Mycologia》2002,94(4):712-722
Pythium porphyrae (Oomycota) is a microbial pathogen which causes red rot disease in the commercially cultivated red seaweed Porphyra. This disease is initiated by the motile zoospores of the fungus, which it has been suggested to recognize and process host specific signals by membrane bound receptors. Monoclonal antibodies (MAbs) were developed against the surface components of zoospores and cysts of this fungus in order to try and identify the putative receptor molecules involved in the zoospore encystment process. Screening of MAbs by immunofluorescence assays has revealed three different patterns of surface epitope binding, while labeling of zoospore and cysts components by FITC-conjugated lectins has identified different carbohydrate moieties. Of the MAbs and lectins tested, MAb 1A3 and wheat germ agglutinin have induced zoospore encystment under in vitro conditions. MAb 1A3 identified a 109 KDa band of a glycoprotein in western blot analysis which could be a putative receptor responsible for the induction of zoospore encystment.  相似文献   

20.
Cochliophilin A (5-hydroxy-6,7-methylenedioxyflavone), a root releasing host-specific plant signal triggers chemotaxis and subsequent morphological changes in pathogenic Aphanomyces cochlioides zoospores before host penetration. The present study illustrates time-course changing patterns of cytoskeletal filamentous actin (F-actin) organization in the zoospores of A. cochlioides during rapid morphological changes (encystment and germination) after exposure to cochliophilin A. Confocal laser scanning microscopic analysis revealed that F-actin microfilaments remained concentrated at ventral groove and diffusely distributed in peripheral cytoplasm of the zoospore. These microfilaments dramatically rearranged and changed into granular F-actin plaques interconnected with fine arrays during encystment. A large patch of actin arrays accumulated at one pole of the cystospores just before germination. Then the actin plaques moved to the emerging germ tube where a distinct cap of microfilaments was seen at the tip of the emerging hypha. Zoospores treated with an inhibitor of F-actin polymerization, latrunculin B or motility halting and regeneration inducing compound nicotinamide, displayed different patterns of F-actin in both zoospores and cystospores than those obtained by the induction of cochliophilin A. Collectively, these results indicate that the host-specific plant signal cochliophilin A triggers a dynamic polymerization/depolymerization of F-actin in pathogenic A. cochlioides zoospores during early events of plant-peronosporomycete interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号