首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
穗长是影响水稻(Oryza sativa)产量的重要因子之一,研究水稻穗长QTL间的上位性效应对于发掘水稻产量潜力具有重要意义。该研究以16个单片段代换系(single segment substitution lines,SSSLs)和15个双片段聚合系(double segment pyramiding lines,DSPLs)为材料研究了水稻穗长QTL的加性及上位性效应。以P〈0.01为阈值,共检测到6个穗长QTL和9对基因互作座位。其中2个(Pl-2和Pl-10)是尚未报道的穗长QTL。穗长QTL互作后,一些互作对的上位性效应与单个QTL的作用方式及效应大小各不相同,预示着基因聚合后会产生不同的互作效应。该研究结果对于通过分子聚合育种手段改良穗长具有重要意义。  相似文献   

2.
水稻单片段代换系代换片段的QTL鉴定   总被引:30,自引:0,他引:30  
利用以台中65为受体、窄叶青和低脚乌尖为供体培育的10个水稻单片段代换系为材料,对代换片段上21个重要农艺性状的QTL进行了鉴定。10个代换片段的总长度为230.00cM,占水稻基因组总长度的12.62%。通过t测验比较单片段代换系与受体亲本的表型差异,以P≤0.001为阈值,在10个代换片段上共鉴定出17个性状的57个QTL,平均每个性状鉴定出3.35个,这些QTL分布于第1、3、5、7、8、10和12染色体上。57个QTL的加性效应百分率在1.10%~89.73%之间,其中15个QTL的加性效应百分率大于10%,30个QTL在3%-10%之间,12个QTL小于3%。  相似文献   

3.
株高是典型的数量性状,易受遗传背景的干扰和环境因素的影响,利用单片段代换系(single segment substitution lines,SSSLs)能减少遗传背景的干扰。以85个单片段代换系为材料,其受体亲本为籼稻广陆矮4号(Oryzasativassp.in-dica),供体亲本为粳稻日本晴(Oryza sativa ssp.japonica)。通过单因素方差分析和Dunnett’s多重比较,分析单片段代换系与受体亲本之间株高的差异,对代换片段上的株高QTL进行鉴定。以P≤0.001为阈值共检测到24个株高QTLs,分别分布于除第10染色体外的其它11条染色体上,其中3个QTLs的加性效应表现为减效作用,另外21个株高QTLs的加性效应表现为增效作用。QTLs加性效应变化范围为-6.5-31.74,加性效应百分率的变化范围为-8.81%-41.96%。该研究对进一步发掘和利用新的矮秆或半矮秆基因资源具有重要意义。  相似文献   

4.
基于CSSL的水稻穗颈长度QTL的代换作图   总被引:3,自引:0,他引:3  
杨德卫  朱镇  张亚东  林静  陈涛  赵凌  朱文银  王才林 《遗传》2009,31(7):741-747
水稻穗颈长度是影响杂交水稻制种产量提高的重要农艺性状之一。文章利用94个以籼稻品种9311为遗传背景、粳稻品种日本晴为染色体片段供体的覆盖全基因组的染色体片段置换系(Chromosome segment substi-tution lines, CSSL)为材料, 调查和分析CSSL群体及双亲的穗颈长度。结果表明: 在17个置换系中检测到8个控制水稻穗颈长度的数量性状位点(Quantitative trait loci, QTL), 分别位于第2、3、7、8、9和第11染色体; 利用代换作图法, 定位了其中的7个穗颈长度QTL; 其加性效应值介于0.10~3.20之间, 其中qPE-9和qPE-11的加性效应值较大, 平均效应值分别为3.15和2.95, 表现为主效基因特征; qPE-2-2、qPE-3-1、qPE-3-2、qPE-7和qPE-8等5个QTL被定位在小于10.0 cM的区段内。利用CSSL可以有效地鉴定水稻穗颈长度QTL, 这些QTL为分子标记辅助选育穗颈长度适中的水稻品系及其进一步的精细定位奠定了基础。  相似文献   

5.
利用染色体单片段代换系定位水稻芽期耐冷QTL   总被引:2,自引:0,他引:2  
水稻(Oryza sativa)芽期耐冷性是其生长发育过程中不可忽视的重要数量性状,易受遗传背景的干扰和环境因素的影响;利用单片段代换系(SSSL.s)能减少遗传背景的干扰。该研究以85个单片段代换系为材料,其受体亲本为广陆矮4号,供体亲本为日本晴。通过单因素方差分析和Dun netts多重比较,分析单片段代换系与受体亲本之间芽期耐冷性的差异,并对代换片段上的芽期耐冷QTL进行鉴定。以F≤0.001为闽值共检测到8个芽期耐冷QTL,分别分布在第1、6、8、9和10号染色体上,其中4个QTL通过代换作图被初步定位。这些QTL加性效应均表现为增效作用,在2个年度间其加性效应值的变化范围分别为14%-44%和10%-45%,加性效应百分率的变化范围分别为700%-2 200%和500%-2 250%,其中qCTPg-2在2个年度间的加性效应均最高,分别为44%和45%。研究结果对进一步发掘和利用新的水稻芽期耐冷QTL具有重要意义。  相似文献   

6.
芽期耐冷性是华南双季稻地区水稻育种的一个重要目标。虽然水稻芽期耐冷QTL的标记定位已取得了一定的进展,但是这些QTL/基因尚未在水稻育种中得到有效的应用。定位稳定表达的芽期耐冷QTL,开展QTL聚合育种是水稻芽期耐冷性育种取得突破的关键。在本研究中,利用以粳稻IR65598-112-2为供体,籼稻华粳籼74为受体构建的单片段代换系(SSSL)开展芽期耐冷QTL定位,并进行聚合育种。通过评价SSSL与受体华粳籼74的芽期耐冷性差异,定位了2个稳定的芽期耐冷QTLs(qCTBB-3和qCTBB-12)。试验表明,分别携带有耐冷QTL qCTBB-3和qCTBB-12的SSSL在冷处理后都比华粳籼74表现出更高的幼苗成活率。通过代换作图,发现在qCTBB-3区间存在2个紧密连锁的耐冷QTLs(qCTBB-3a和qCTBB-3b)。利用本研究携带qCTBB-3a/qCTBB-3b的单片段代换系和前期研究鉴定出的芽期耐冷QTL qCTBB-6的单片段代换系为亲本进行杂交,通过分子标记辅助选择,获得了2份含有这3个QTL的聚合系。耐冷性评价表明,来源于两个供体/亲本的QTL不存在显著的上位性效应,聚合系的芽期耐冷性较亲本显著增强。可见,通过聚合芽期耐冷QTLs qCTBB-3a/qCTBB-3b和qCTBB-6能显著提高水稻芽期的耐冷性,获得的QTL及三耐冷QTL聚合系为水稻芽期耐冷性分子育种提供了优良的基因资源和亲本材料。  相似文献   

7.
利用高代回交和分子标记辅助选择建立水稻单片段代换系   总被引:34,自引:0,他引:34  
以水稻品种华梗籼74为受体,以6个水稻品种为供体.通过高代回交和微卫星标记辅助选择相结合的方法,建立了水稻的一个单片段代换系群体。该群体Fh86个单片段代换系组成,其中52个在BC3F2中获得,34个在BC3F3中获得。每个单片段代换系只含有来自一个供体的一个染色体代换片段,而遗传背景与华粳籼74相同。这些单片段代换系的代换片段分布于水稻的12条染色体,代换片段的长度为1.5~56.3cM,平均长度为23.0cM。全部代换片段在水稻基因组上的覆盖率为57.1%。  相似文献   

8.
水稻落粒性是与其生产密切相关的重要性状之一。以7个染色体片段置换系为材料, 采用重叠群代换作图法对控制落粒性的2个主效QTL进行定位。结果表明, 104个SSR标记在亲本间具有多态性, 多态率为68.0%; 4个置换系的落粒性与亲本日本晴的落粒性相似, 表现难落粒。3个置换系与亲本93-11的落粒性相似, 表现易落粒; 7个染色体片段置换系在第1和第6染色体上检出7个置换片段, 其长度分别为23.6、16.5、 6.6、 9.9、 10.4、 20.2和7.1 cM; qSH-1-1被定位在第1染色体RM472-RM1387之间, 遗传距离约为6.6 cM。qSH-6-1为新发现的落粒性主效QTL, 被定位在第6染色体RM6782-RM3430之间,遗传距离约为4.2 cM。利用染色体片段置换系能准确地定位水稻落粒性QTL, qSH-1-1与qSH-6-1的鉴定和初步定位为其进一步的精细定位、图位克隆及分子标记辅助选择奠定了基础。  相似文献   

9.
利用染色体片段置换系定位水稻落粒性主效QTL   总被引:9,自引:3,他引:6  
水稻落粒性是与其生产密切相关的重要性状之一。以7个染色体片段置换系为材料,采用重叠群代换作图法对控制落粒性的2个主效QTL进行定位。结果表明,104个SSR标记在亲本间具有多态性,多态率为68.0%;4个置换系的落粒性与亲本日本晴的落粒性相似,表现难落粒。3个置换系与亲本93-11的落粒性相似,表现易落粒;7个染色体片段置换系在第1和第6染色体上检出7个置换片段,其长度分别为23.6、16.5、6.6、9.9、10.4、20.2和7.1 cM;qSH-1-1被定位在第1染色体RM472-RM1387之间,遗传距离约为6.6 cM。qSH-6-1为新发现的落粒性主效QTL,被定位在第6染色体RM6782-RM3430之间,遗传距离约为4.2 cM。利用染色体片段置换系能准确地定位水稻落粒性QTL,qSH-1-1与qSH-6-1的鉴定和初步定位为其进一步的精细定位、图位克隆及分子标记辅助选择奠定了基础。  相似文献   

10.
水稻穗颈维管束及穗部性状的QTL分析   总被引:15,自引:0,他引:15  
以籼稻 (OryzasativaL .ssp .indicaZYQ8)和粳稻 (O .sativassp .japonicaJX17)的杂交F1代花培加倍的DH群体为材料考察了该群体的穗颈节大小维管束数、一次枝梗数、每穗颖花数、穗颈节顶部直径和穗长 ,并用该群体构建的分子图谱进行数量性状座位 (QTL)分析。检测到控制大维管束的 3个QTL (qLVB_1、qLVB_6和qLVB_7)分别位于第 1、第 6和第 7染色体 ;控制小维管束的 2个QTL (qSVB_4和qSVB_6 )分别位于第 4和第 6染色体 ;控制一次枝梗的 4个QTL (qPRB_4a、qPRB_4b、qPRB_6和qPRB_7)分别位于第 4(2个 )、第 6和第 7染色体 ;每穗颖花数的 3个QTL (qSPN_4a、qSPN_4b和qSPN_6 )分别位于第 4(2个 )和第 6染色体上 ;穗颈节顶部直径的 5个QTL (qPTD_2、qPTD_5、qPTD_6、qPTD_8和qPTD_12 )分别位于第 2、第 5、第 6、第 8和第 12染色体 ;穗长的 3个QTL (qPL_4、qPL_6和qPL_8)分别位于第 4、第 6、第 8染色体上。其中qLVB_6、qSVB_6、qSPN_6、qPTD_6和qPL_6均位于第 6染色体的G12 2_G1314b之间 ;qPL_8和qPTD_8位于第 8染色体的GA40 8_BP12 7a之间 ;qPRB_4a和qSPN_4a位于第 4染色体的G177_CT2 0 6之间 ;qPL_4和qSPN_4b位于第 4染色体CT40 4_CT5 0 0之间 ;qSVB_4所在的区间与qPL_4、qSPN_4b和qPRB_4b所在的区间相邻。  相似文献   

11.
抽穗期是水稻(Oryza sativa)品种的重要农艺性状之一,适宜的抽穗期是获得理想产量的前提。鉴定和定位水稻抽穗期基因/QTL,分析其遗传效应对改良水稻抽穗期至关重要。以籼稻品种9311(Oryzasativa ssp.indica‘Yangdao 6’)为受体,粳稻品种日本晴(Oryza sativa ssp.japonica‘Nipponbare’)为供体构建的94个染色体片段置换系群体为材料,以P≤0.01为阈值,对置换片段上的抽穗期QTL进行了鉴定。采用代换作图法共定位了4个控制水稻抽穗期的QTL,分别位于第3、第4、第5和第8染色体;QTL的加性效应值变化范围为–6.4––2.7,加性效应百分率变化范围为–6.4%––2.7%;qHD-3和qHD-8加性效应值较大,表现主效基因特征。为了进一步定位qHD-3和qHD-8,在目标区域加密16对SSR引物,qHD-3和qHD-8分别被界定在第3染色体RM3166–RM16206之间及第8染色体RM4085–RM8271之间,其遗传距离分别为13.9cM和6.4cM。研究结果为利用分子标记辅助选择改良水稻抽穗期奠定了基础。  相似文献   

12.
The demand for high quality rice represents a major issue in rice production. The primary components of rice grain quality include appearance, eating, cooking, physico-chemical, milling and nutritional qualities. Most of these traits are complex and controlled by quantitative trait loci (QTLs), so the genetic characterization of these traits is more difficult than that of traits controlled by a single gene. The detection and genetic identification of QTLs can provide insights into the genetic mechanisms underlying quality traits. Chromosome segment substitution lines (CSSLs) are effective tools used in mapping QTLs. In this study, we constructed 154 CSSLs from backcross progeny (BC3F2) derived from a cross between 'Koshihikari' (an Oryza sativa L. Ssp. Japonica variety) as the recurrent parent and 'Nona Bokra' (an O. Sativa L. Ssp. Indica variety) as the donor parent. In this process, we carried out marker-assisted selection by using 102 cleaved amplified polymorphic sequence and simple sequence repeat markers covering most of the rice genome. Finally, this set of CSSLs was used to identify QTLs for rice quality traits. Ten QTLs for rice appearance quality traits were detected and eight QTLs concerned physico-chemical traits. These results supply the foundation for further genetic studies and breeding for the improvement of grain quality.  相似文献   

13.
染色体片段替换系(CSSL)是基因组水平快速初步定位数量性状基因座位(QTL)的良好材料,而水稻的品质性状是多基因控制的数量性状,因此可用替换系鉴定控制水稻品质性状的QTL。本文用分子标记辅助选择技术(MAS)构建了由133个株系组成的以‘特青’(籼稻品种)为轮回亲本,以海南的一种普通野生稻为供体亲本,覆盖绝大部分野生稻基因组的染色体片段替换系。利用这套替换系,初步定位了控制稻米外观和理化品质性状的15个QTL,为今后水稻品质性状QTL的克隆以及稻米品质相关性状的改良提供了依据。  相似文献   

14.
Uniformity of stem height in rice directly affects crop yield potential and appearance, and has become a vital index for rice improvement. In the present study, a doubled haploid (DH) population, derived from a cross between japonica rice Chunjiang 06 and indica rice TN1 was used to analyze the quantitative trait locus (QTL) for three related traits of panicle-layer-uniformity; that is, the tallest panicle height, the lowest panicle height and panicle layer disuniformity in two locations: Hangzhou (HZ) and Hainan (HN). A total of 16 QTLs for three traits distributed on eight chromosomes were detected in two different environments. Two QTLs, qTPH -4 and qTPH -8 were co-located with the QTLs for qLPH -4 and qLPH -8, which were only significant in the HZ environment, whereas the qTPH -6 and qLPH -6 located at the same interval were only significant in the HN environment. Two QTLs, qPLD -10-1 and qPLD -10-2, were closely linked to qTPH-10 , and they might have been at the same locus. One QTL, qPLD -3, was detected in both environments, explaining more than 23% of the phenotypic variations. The CJ06 allele of qPLD -3 could increase the panicle layer disuniformity by 9.23 and 4.74 cm in the HZ and HN environments. Except for qPLD -3, almost all other QTLs for the same trait were detected only in one environment, indicating that these three traits were dramatically affected by environmental factors. The results may be useful for elucidation of the molecular mechanism of panicle-layer-uniformity and marker assisted breeding for super-rice.  相似文献   

15.
基于CSSL的高密度物理图谱定位水稻分蘖角度QTL   总被引:1,自引:0,他引:1  
对以籼稻9311为遗传背景携带粳稻日本晴基因组的染色体片段置换系(CSSL)的遗传图谱进行分子标记加密,构建了含250个多态标记的高密度物理图谱。以119个CSSLs为材料,P≤0.001为阈值,筛选到分蘖角度与受体亲本9311差异极显著的10个系。结合物理图谱和代换作图方法,共鉴定出5个分蘖角度QTL,其中qTA11的加性效应表现为增效作用,来源于9311的等位基因;其余4个QTL的加性效应为减效作用,均来源于日本晴的等位基因。qTA6-1和qTA6-2分别被定位于第6染色体RM253–RM527之间的3.55Mb区段和RM3139–RM494的1.65Mb区间;qTA9被定位于第9染色体RM257–RM189之间的3.40Mb区段;qTA10被定位在第10染色体RM222–S10-1之间的2.10Mb区段;qTA11被定位于第11染色体RM1761–RM4504之间的3.30Mb区间。以上研究结果为水稻分蘖角度QTL的精细定位和株型育种提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号