首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lipid kinase PI3K plays key roles in cellular responses to activation of receptor tyrosine kinases or G protein coupled receptors such as the metabotropic glutamate receptor (mGluR). Activation of the PI3K catalytic subunit p110 occurs when the PI3K regulatory subunit p85 binds to phosphotyrosine residues present in upstream activating proteins. In addition, Ras is uniquely capable of activating PI3K in a p85‐independent manner by binding to p110 at amino acids distinct from those recognized by p85. Because Ras, like p85, is activated by phosphotyrosines in upstream activators, it can be difficult to determine if particular PI3K‐dependent processes require p85 or Ras. Here, we ask if PI3K requires Ras activity for either of two different PI3K‐regulated processes within Drosophila larval motor neurons. To address this question, we determined the effects on each process of transgenes and chromosomal mutations that decrease Ras activity, or mutations that eliminate the ability of PI3K to respond to activated Ras. We found that PI3K requires Ras activity to decrease motor neuron excitability, an effect mediated by ligand activation of the single Drosophila mGluR DmGluRA. In contrast, the ability of PI3K to increase nerve terminal growth is Ras‐independent. These results suggest that distinct regulatory mechanisms underlie the effects of PI3K on distinct phenotypic outputs.  相似文献   

2.
ICOS ligation in concert with TCR stimulation results in strong PI3K activation in T lymphocytes. The ICOS cytoplasmic tail contains an YMFM motif that binds the p85alpha subunit of class IA PI3K, similar to the YMNM motif of CD28, suggesting a redundant function of the two receptors in PI3K signaling. However, ICOS costimulation shows greater PI3K activity than CD28 in T cells. We show in this report that ICOS expression in activated T cells triggers the participation of p50alpha, one of the regulatory subunits of class IA PI3Ks. Using different T-APC cell conjugate systems, we report that p50alpha accumulates at the immunological synapse in activated but not in resting T cells. Our results demonstrate that ICOS membrane expression is involved in this process and that p50alpha plasma membrane accumulation requires a functional YMFM Src homology 2 domain-binding motif in ICOS. We also show that ICOS triggering with its ligand, ICOSL, induces the recruitment of p50alpha at the synapse of T cell/APC conjugates. In association with the p110 catalytic subunit, p50alpha is known to carry a stronger lipid kinase activity compared with p85alpha. Accordingly, we observed that ICOS engagement results in a stronger activation of PI3K. Together, these findings provide evidence that p50alpha is likely a determining factor in ICOS-mediated PI3K activity in T cells. These results also suggest that a differential recruitment and activity of class IA PI3K subunits represents a novel mechanism in the control of PI3K signaling by costimulatory molecules.  相似文献   

3.
Phosphatidylinositol 3-kinase (PI3K) activation is necessary for many insulin-induced metabolic and mitogenic responses. However, it is unclear whether PI3K activation is sufficient for any of these effects. To address this question we increased PI3K activity in differentiated 3T3-L1 adipocytes by adenovirus-mediated expression of both the inter-SH2 region of the regulatory p85 subunit of PI3K (iSH2) and the catalytic p110 alpha subunit (p110). Coexpression resulted in PI3K activity that exceeded insulin-stimulated activity by two- to fivefold in cytosol, total membranes, and the low density microsome (LDM) fraction, the site of greatest insulin stimulation. While insulin increased glucose transport 15-fold, coexpression of iSH2-p110 increased transport (5.2-) +/- 0.7-fold with a parallel increase in GLUT4 translocation to the plasma membrane. Constitutive activation of PI3K had no effect on maximally insulin-stimulated glucose transport. Neither basal nor insulin-stimulated activity of glycogen synthase or mitogen-activated protein kinase was altered by iSH2-p110 coexpression. DNA synthesis was increased twofold by insulin in control 3T3-L1 adipocytes transduced with beta-galactosidase-encoding recombinant adenovirus, while iSH2-p110 coexpression increased DNA synthesis fivefold. These data indicate that (i) increased PI3K activity is sufficient to activate some but not all metabolic responses to insulin, (ii) activation of PI3K to levels exceeding the effect of insulin in adipocyte LDM results in only a partial stimulation of glucose transport, and (iii) increased PI3K activity in the absence of growth factor or oncoprotein stimulation is a potent stimulus of DNA synthesis.  相似文献   

4.
Phosphatidylinositol (PI) 3-kinase is a cytoplasmic signaling molecule recruited to the membrane by activated growth factor receptors. The p85 subunit of PI 3-kinase links the catalytic p110 subunit to activated growth factor receptors and is required for enzymatic activity of p110. In this report, we describe the effects of expressing novel forms of p110 that are targeted to the membrane by either N-terminal myristoylation or C-terminal farnesylation. The expression of membrane-localized p110 is sufficient to trigger downstream responses characteristic of growth factor action, including the stimulation of pp70 S6 kinase, Akt/Rac, and Jun N-terminal kinase (JNK). These responses can also be triggered by expression of a form of p110 (p110*) that is cytosolic but exhibits a high specific activity. Finally, targeting of pl10* to the membrane results in maximal activation of downstream responses. Our data demonstrate that either membrane-targeted forms of p110 or a form of p110 with high specific activity can act as constitutively active PI 3-kinases and induce PI 3-kinase-dependent responses in the absence of growth factor stimulation. The results also show that PI 3-kinase activation is sufficient to stimulate several kinases that appear to function in different signaling pathways.  相似文献   

5.
We have reported previously that Ras interacts with the catalytic subunit of phosphoinositide 3-kinase (PI 3-kinase) in a GTP-dependent manner. The affinity of the interaction of Ras-GTP with p85alpha/p110alpha is shown here to be approximately 150 nM. The site of interaction on the p110alpha and beta isoforms of PI 3-kinase lies between amino acid residues 133 and 314. A point mutation in this region, K227E, blocks the GTP-dependent interaction of PI 3-kinase p110alpha with Ras in vitro and the ability of Ras to activate PI 3-kinase in intact cells. In addition, this mutation elevates the basal activity of PI 3-kinase in intact cells, suggesting a direct influence of the Ras binding site on the catalytic activity of PI 3-kinase. Using an in vitro reconstitution assay, it is shown that the interaction of Ras-GTP, but not Ras-GDP, with PI 3-kinase leads to an increase in its enzymatic activity. This stimulation is synergistic with the effect of tyrosine phosphopeptide binding to p85, particularly at suboptimal peptide concentrations. These data show that PI 3-kinase is regulated by a number of mechanisms, and that Ras contributes to the activation of this lipid kinase synergistically with tyrosine kinases.  相似文献   

6.
The phosphoinositide 3-kinase (PI3K) signaling pathway critically regulates cell growth and cell survival. Mutations that lead to aberrant activation of this pathway are frequent events in human cancers. Here we discuss some recent studies identifying the mechanisms by which p85, the regulatory subunit of PI3K, negatively regulates PI3K signaling. While necessary for the stability and membrane recruitment of the p110 catalytic subunit of PI3K. p85 represses the basal activity of p110 in the absence of growth factor stimulation. In its unbound, free form, p85 sequesters the adaptor protein IRS-1 and therefore limits the extent of PI3K signaling downstream of the insulin and IGF-1 receptors. These findings lend new insight to how changes in p85 gene dosage or mutations in p85 could lead to the hyper-activation of PI3K and thus contribute towards tumorigenesis.  相似文献   

7.
Phosphoinositide 3-kinase (PI 3-kinase) is a key signaling enzyme implicated in a variety of receptor-stimulated cell responses. Stimulation of receptors possessing (or coupling to) protein-tyrosine kinase activates heterodimeric PI 3-kinases, which consist of an 85-kDa regulatory subunit (p85) containing Src-homology 2 (SH2) domains and a 110-kDa catalytic subunit (p110 alpha or p110 beta). Thus, this form of PI 3-kinases could be activated in vitro by a phosphotyrosyl peptide containing a YMXM motif that binds to the SH2 domains of p85. Receptors coupling to alpha beta gamma-trimeric G proteins also stimulate the lipid kinase activity of a novel p110 gamma isoform, which is not associated with p85, and thereby is not activated by tyrosine kinase receptors. The activation of p110 gamma PI 3-kinase appears to be mediated through the beta gamma subunits of the G protein (G beta gamma). In addition, rat liver heterodimeric PI 3-kinases containing the p110 beta catalytic subunit are synergistically activated by the phosphotyrosyl peptide plus G beta gamma. Such enzymatic properties were also observed with a recombinant p110 beta/p85 alpha expressed in COS-7 cells. In contrast, another heterodimeric PI 3-kinase consisting of p110 alpha and p85 in the same rat liver, together with a recombinant p110 alpha/p85 alpha, was not activated by G beta gamma, though their activities were stimulated by the phosphotyrosyl peptide. Synergistic activation of PI 3-kinase by the stimulation of the two major receptor types was indeed observed in intact cells, such as chemotactic peptide (N-formyl-Met-Leu-Phe) plus insulin (or Fc gamma II) receptors in differentiated THP-1 and CHO cells and adenosine (A1) plus insulin receptors in rat adipocytes. Thus, PI 3-kinase isoforms consisting of p110 beta catalytic and SH2-containing (p85 or its related) regulatory subunits appeared to function as a 'cross-talk' enzyme between the two signal transduction pathways mediated through tyrosine kinase and G protein-coupled receptors.  相似文献   

8.
Regulation of phosphoinositide 3-kinase (PI 3-kinase) can occur by binding of the regulatory p85 subunit to tyrosine-phosphorylated proteins and by binding of the p110 catalytic subunit to activated Ras. However, the way in which these regulatory mechanisms act to regulate PI 3-kinase in vivo is unclear. Here we show that several growth factors (basic fibroblast growth factor [bFGF], platelet-derived growth factor [PDGF], and epidermal growth factor [EGF; to activate an EGF receptor-Ret chimeric receptor]) all activate PI 3-kinase in vivo in the neuroectoderm-derived cell line SKF5. However, these growth factors differ in their ability to activate PI 3-kinase-dependent signaling. PDGF and EGF(Ret) treatment induced PI 3-kinase-dependent lamellipodium formation and protein kinase B (PKB) activation. In contrast, bFGF did not induce lamellipodium formation but activated PKB, albeit to a small extent. PDGF and EGF(Ret) stimulation resulted in binding of p85 to tyrosine-phosphorylated proteins and strong Ras activation. bFGF, however, induced only strong activation of Ras. In addition, while RasAsn17 abolished bFGF activation of PKB, PDGF- and EGF(Ret)-induced PKB activation was only partially inhibited and lamellipodium formation was unaffected. Interestingly, in contrast to activation of only endogenous Ras (bFGF), ectopic expression of activated Ras did result in lamellipodium formation. From this we conclude that, in vivo, p85 and Ras synergize to activate PI 3-kinase and that strong activation of only endogenous Ras exerts a small effect on PI 3-kinase activity, sufficient for PKB activation but not lamellipodium formation. This differential sensitivity to PI 3-kinase activation could be explained by our finding that PKB activation and lamellipodium formation are independent PI 3-kinase-induced events.  相似文献   

9.
We have investigated the role of the SH3 and BH domains in the function of the p85α adapter/regulatory subunit of PI 3-kinase. In these studies epitope-tagged adapter subunit constructs containing wild-type p85α, p85α lacking the SH3 domain (ΔSH3-p85α), or p85α lacking the Rac-GAP/BCR homology (BH) domain (ΔBH-p85α) were coexpressed with either the p110α or p110β PI 3-kinase catalytic subunit in HEK293 cells. The deletion of either BH or SH3 domains had no effect on the intrinsic activity of the PI 3-kinase heterodimers. However, the ability of activated Rac to stimulate PI 3-kinase activity was only observed in heterodimers containing the p85α and ΔSH3-p85α, indicating that rac binding to the BH domain is responsible for rac-induced stimulation of class Ia PI 3-kinase. We also investigated the effect of SH3 and BH domain deletion on the ability of insulin to induce recruitment of these constructs into phosphotyrosine-containing signaling complexes. We find that p85α expressed alone is poorly recruited into such signaling complexes. However, when coexpressed with catalytic subunit, the p85α adapter subunit is recruited to an extent similar to that of endogenous p85α. Maximal insulin stimulation caused a similar level of recruitment of p85α, ΔSH3-p85α, and ΔBH-p85α to signaling complexes when these adapter subunits were coexpressed with catalytic subunit. However, there was a higher level of basal association of the ΔSH3-p85α and ΔBH-p85α with tyrosine-phosphorylated proteins, meaning that the insulin-induced fold increase in recruitment was lower for these forms of the adapter. These results indicate that the N-terminal domains of p85α play a critical role in the way the adapter subunit responds to growth factor stimulation.  相似文献   

10.
The p85α protein is best known as the regulatory subunit of class 1A PI3Ks (phosphoinositide 3-kinases) through its interaction, stabilization and repression of p110-PI3K catalytic subunits. PI3Ks play multiple roles in the regulation of cell survival, signalling, proliferation, migration and vesicle trafficking. The present review will focus on p85α, with special emphasis on its important roles in the regulation of PTEN (phosphatase and tensin homologue deleted on chromosome 10) and Rab5 functions. The phosphatidylinositol-3-phosphatase PTEN directly counteracts PI3K signalling through dephosphorylation of PI3K lipid products. Thus the balance of p85α-p110 and p85α-PTEN complexes determines the signalling output of the PI3K/PTEN pathway, and under conditions of reduced p85α levels, the p85α-PTEN complex is selectively reduced, promoting PI3K signalling. Rab5 GTPases are important during the endocytosis, intracellular trafficking and degradation of activated receptor complexes. The p85α protein helps switch off Rab5, and if defective in this p85α function, results in sustained activated receptor tyrosine kinase signalling and cell transformation through disrupted receptor trafficking. The central role for p85α in the regulation of PTEN and Rab5 has widened the scope of p85α functions to include integration of PI3K activation (p110-mediated), deactivation (PTEN-mediated) and receptor trafficking/signalling (Rab5-mediated) functions, all with key roles in maintaining cellular homoeostasis.  相似文献   

11.
Class I phosphoinositide 3-kinases (PI3Ks) are bifunctional enzymes possessing lipid kinase activity and the capacity to phosphorylate their catalytic and/or regulatory subunits. In this study, in vitro autophosphorylation of the G protein-sensitive p85-coupled class I(A) PI3K beta and p101-coupled class I(B) PI3K gamma was examined. Autophosphorylation sites of both PI3K isoforms were mapped to C-terminal serine residues of the catalytic p110 subunit (i.e. serine 1070 of p110 beta and serine 1101 of p110 gamma). Like other class I(A) PI3K isoforms, autophosphorylation of p110 beta resulted in down-regulated PI3K beta lipid kinase activity. However, no inhibitory effect of p110 gamma autophosphorylation on PI3K gamma lipid kinase activity was observed. Moreover, PI3K beta and PI3K gamma differed in the regulation of their autophosphorylation. Whereas p110 beta autophosphorylation was stimulated neither by G beta gamma complexes nor by a phosphotyrosyl peptide derived from the platelet-derived growth factor receptor, autophosphorylation of p110 gamma was significantly enhanced by G beta gamma in a time- and concentration-dependent manner. In summary, we show that autophosphorylation of both PI3K beta and PI3K gamma occurs in a C-terminal region of the catalytic p110 subunit but differs in its regulation and possible functional consequences, suggesting distinct roles of autophosphorylation of PI3K beta and PI3K gamma.  相似文献   

12.
The PI3K/Akt pathway is central for numerous cellular functions and is frequently deregulated in human cancers. The catalytic subunits of PI3K, p110, are thought to have a potential oncogenic function, and the regulatory subunit p85 exerts tumor suppressor properties. The fruit fly, Drosophila melanogaster, is a highly suitable system to investigate PI3K signaling, expressing one catalytic, Dp110, and one regulatory subunit, Dp60, and both show strong homology with the human PI3K proteins p110 and p85. We recently showed that p37δ, an alternatively spliced product of human PI3K p110δ, displayed strong proliferation-promoting properties despite lacking the catalytic domain completely. Here we functionally evaluate the different domains of human p37δ in Drosophila. The N-terminal region of Dp110 alone promotes cell proliferation, and we show that the unique C-terminal region of human p37δ further enhances these proliferative properties, both when expressed in Drosophila, and in human HEK-293 cells. Surprisingly, although the N-terminal region of Dp110 and the C-terminal region of p37δ both display proliferative effects, over-expression of full length Dp110 or the N-terminal part of Dp110 decreases survival in Drosophila, whereas the unique C-terminal region of p37δ prevents this effect. Furthermore, we found that the N-terminal region of the catalytic subunit of PI3K p110, including only the Dp60 (p85)-binding domain and a minor part of the Ras binding domain, rescues phenotypes with severely impaired development caused by Dp60 over-expression in Drosophila, possibly by regulating the levels of Dp60, and also by increasing the levels of phosphorylated Akt. Our results indicate a novel kinase-independent function of the PI3K catalytic subunit.  相似文献   

13.
Phosphoinositide (PI) 3-kinase is a key mediator of insulin-dependent metabolic actions, including stimulation of glucose transport and glycogen synthesis. The gene for the p85alpha regulatory subunit yields three splicing variants, p85alpha, AS53/p55alpha, and p50alpha. All three have (i) a C-terminal structure consisting of two Src homology 2 domains flanking the p110 catalytic subunit-binding domain and (ii) a unique N-terminal region of 304, 34, and 6 amino acids, respectively. To determine if these regulatory subunits differ in their effects on enzyme activity and signal transduction from insulin receptor substrate (IRS) proteins under physiological conditions, we expressed each regulatory subunit in fully differentiated L6 myotubes using adenovirus-mediated gene transfer with or without coexpression of the p110alpha catalytic subunit. PI 3-kinase activity associated with p50alpha was greater than that associated with p85alpha or AS53. Increasing the level of p85alpha or AS53, but not p50alpha, inhibited both phosphotyrosine-associated and p110-associated PI 3-kinase activities. Expression of a p85alpha mutant lacking the p110-binding site (Deltap85) also inhibited phosphotyrosine-associated PI 3-kinase activity but not p110-associated activity. Insulin stimulation of two kinases downstream from PI-3 kinase, Akt and p70 S6 kinase (p70(S6K)), was decreased in cells expressing p85alpha or AS53 but not in cells expressing p50alpha. Similar inhibition of PI 3-kinase, Akt, and p70(S6K) was observed, even when p110alpha was coexpressed with p85alpha or AS53. Expression of p110alpha alone dramatically increased glucose transport but decreased glycogen synthase activity. This effect was reduced when p110alpha was coexpressed with any of the three regulatory subunits. Thus, the three different isoforms of regulatory subunit can relay the signal from IRS proteins to the p110 catalytic subunit with different efficiencies. They also negatively modulate the PI 3-kinase catalytic activity but to different extents, dependent on the unique N-terminal structure of each isoform. These data also suggest the existence of a mechanism by which regulatory subunits modulate the PI 3-kinase-mediated signals, independent of the kinase activity, possibly through subcellular localization of the catalytic subunit or interaction with additional signaling molecules.  相似文献   

14.
Autophagy is an evolutionarily conserved cell renewal process that depends on phosphatidylinositol 3-phosphate (PtdIns(3)P). In metazoans, autophagy is inhibited by PtdIns(3,4,5)P(3), the product of class IA PI3Ks, which mediates the activation of the Akt-TOR kinase cascade. However, the precise function of class IA PI3Ks in autophagy remains undetermined. Class IA PI3Ks are heterodimeric proteins consisting of an 85-kD regulatory subunit and a 110-kD catalytic subunit. Here we show that the class IA p110-β catalytic subunit is a positive regulator of autophagy. Genetic deletion of p110-β results in impaired autophagy in mouse embryonic fibroblasts, liver, and heart. p110-β does not promote autophagy by affecting the Akt-TOR pathway. Rather, it associates with the autophagy-promoting Vps34-Vps15-Beclin 1-Atg14L complex and facilitates the generation of cellular PtdIns(3)P. Our results unveil a previously unknown function for p110-β as a positive regulator of autophagy in multicellular organisms.  相似文献   

15.
The signaling pathways that control T cell differentiation have only begun to be elucidated. Using T cell lines, it has been shown that class IA phosphatidylinositol 3-kinase (PI3K), a heterodimer composed of a p85 regulatory and a p110 catalytic subunit, is activated after TCR stimulation. Nonetheless, the contribution of p85/p110 PI3K isoforms in T cell development has not been described. Mice deficient in the other family of class I PI3K, p110gamma, which is regulated by G protein-coupled receptors, exhibit reduced thymus size. Here we examine T cell development in p110gamma-deficient mice and in mice expressing an activating mutation of the p85 regulatory subunit, p65(PI3K), in T cells. We show that p110gamma-deficient mice have a partial defect in pre-TCR-dependent differentiation, which is restored after expression of the p65(PI3K) activating mutation. Genetic alteration of both PI3K isoforms also affects positive selection; p110gamma deletion decreased and p65(PI3K) expression augmented the CD4(+)/CD8(+) differentiation ratio. Finally, data are presented showing that both PI3K isoforms influenced mature thymocyte migration to the periphery. These observations underscore the contribution of PI3K in T cell development, as well as its implication in determining the CD4(+)/CD8(+) T cell differentiation ratio in vivo.  相似文献   

16.
PAR-2 (protease-activated receptor 2) is a GPCR (G-protein-coupled receptor) that can elicit both G-protein-dependent and -independent signals. We have shown previously that PAR-2 simultaneously promotes Galphaq/Ca2+-dependent activation and beta-arrestin-1-dependent inhibition of class IA PI3K (phosphoinositide 3-kinase), and we sought to characterize further the role of beta-arrestins in the regulation of PI3K activity. Whereas the ability of beta-arrestin-1 to inhibit p110alpha (PI3K catalytic subunit alpha) has been demonstrated, the role of beta-arrestin-2 in PI3K regulation and possible differences in the regulation of the two catalytic subunits (p110alpha and p110beta) associated with p85alpha (PI3K regulatory subunit) have not been examined. In the present study we have demonstrated that: (i) PAR-2 increases p110alpha- and p110beta-associated lipid kinase activities, and both p110alpha and p110beta are inhibited by over-expression of either beta-arrestin-1 or -2; (ii) both beta-arrestin-1 and -2 directly inhibit the p110alpha catalytic subunit in vitro, whereas only beta-arrestin-2 directly inhibited p110beta; (iii) examination of upstream pathways revealed that PAR-2-induced PI3K activity required the small GTPase Cdc (cell-division cycle)42, but not tyrosine phosphorylation of p85; and (iv) beta-arrestins inhibit PAR-2-induced Cdc42 activation. Taken together, these results indicated that beta-arrestins could inhibit PAR-2-stimulated PI3K activity, both directly and through interference with upstream pathways, and that the two beta-arrestins differ in their ability to inhibit the p110alpha and p110beta catalytic subunits. These results are particularly important in light of the growing interest in PAR-2 as a pharmacological target, as commonly used biochemical assays that monitor G-protein coupling would not screen for beta-arrestin-dependent signalling events.  相似文献   

17.
The PIK3CA gene, encoding the p110alpha catalytic subunit of Class IA PI3Ks (phosphoinositide 3-kinases), is frequently mutated in many human tumours. The three most common tumour-derived alleles of p110alpha, H1047R, E542K and E545K, were shown to potently activate PI3K signalling in human epithelial cells. In the present study, we examine the biochemical activity of the recombinantly purified PI3K oncogenic mutants. The kinetic characterizations of the wt (wild-type) and the three 'hot spot' PI3K mutants show that the mutants all have approx. 2-fold increase in lipid kinase activities. Interestingly, the phosphorylated IRS-1 (insulin receptor substrate-1) protein shows activation of the lipid kinase activity for the wt and H1047R but not E542K and E545K PI3Kalpha, suggesting that these mutations represent different mechanisms of lipid kinase activation and hence transforming activity in cancer cells.  相似文献   

18.
Class IA phosphoinositide (PI) 3-kinase is composed of a p110 catalytic subunit and a p85 regulatory subunit and plays a pivotal role in insulin signaling. To explore the physiological roles of two major regulatory isoforms, p85 alpha and p85 beta, we have established brown adipose cell lines with disruption of the Pik3r1 or Pik3r2 gene. Pik3r1-/- (p85 alpha-/-) cells show a 70% reduction of p85 protein and a parallel reduction of p110. These cells have a 50% decrease in PI 3-kinase activity and a 30% decrease in Akt activity, leading to decreased insulin-induced glucose uptake and anti-apoptosis. Pik3r2-/- (p85 beta-/-) cells show a 25% reduction of p85 protein but normal levels of p85-p110 and PI 3-kinase activity, supporting the fact that p85 is more abundant than p110 in wild type. p85 beta-/- cells, however, exhibit significantly increased insulin-induced Akt activation, leading to increased anti-apoptosis. Reconstitution experiments suggest that the discrepancy between PI 3-kinase activity and Akt activity is at least in part due to the p85-dependent negative regulation of downstream signaling of PI 3-kinase. Indeed, both p85 alpha-/- cells and p85 beta-/- cells exhibit significantly increased insulin-induced glycogen synthase activation. p85 alpha-/- cells show decreased insulin-stimulated Jun N-terminal kinase activity, which is restored by expression of p85 alpha, p85 beta, or a p85 mutant that does not bind to p110, indicating the existence of p85-dependent, but PI 3-kinase-independent, signaling pathway. Furthermore, a reduction of p85 beta specifically increases insulin receptor substrate-2 phosphorylation. Thus, p85 alpha and p85 beta modulate PI 3-kinase-dependent signaling by multiple mechanisms and transmit signals independent of PI 3-kinase activation.  相似文献   

19.
20.
Differential activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway has been linked to cancer. Activation occurs through gene amplification and activating mutations. High-frequency mutations in the gene encoding the p110α catalytic subunit of PI3K (PIK3CA) have been observed in a variety of tumors including colon, brain, breast, ovarian, and gastric. Inhibition of PI3K kinase activity may provide a specific way to treat multiple types of human cancer. A scintillation proximity assay (SPA) was developed to detect phosphatidylinositol 3-kinase catalytic activity. Using this assay format, steady-state kinetic parameters were compared for the PI3K class IA enzymes p110α, p110β, and p110δ, each coexpressed with the regulatory subunit p85α or splice variant p55α. Inhibition by the natural product wortmannin and LY294002 was detected with potencies consistent with alternate assay formats. Other biochemical assay formats have been described for phosphoinositide 3-kinases but each has its unique limitations. The simple, inexpensive, sensitive high-throughput nature of the SPA format has advanced our knowledge of isoform-specific enzymology and will facilitate the discovery of novel PI3K inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号