首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protease-activated receptor-2 (PAR-2) is abundantly expressed in gastric mucosal chief cells, facilitating pepsinogen secretion. In the present study, we investigated whether PAR-1, a thrombin receptor, could modulate pepsinogen secretion in rats. The PAR-1-activating peptide TFLLR-NH(2) as well as the PAR-2-activating peptide SLIGRL-NH(2), administered i.v. repeatedly at 1-h intervals, significantly increased gastric pepsinogen secretion over 2-4 h (after two to four doses). In contrast, the control peptide FTLLR-NH(2), given in the same manner, had no such effect. Thus, PAR-1, like PAR-2, might function to facilitate pepsinogen secretion, suggesting a novel role of the thrombin-PAR-1-pathway in the stomach.  相似文献   

2.
Tryptic enzymes such as tryptase, trypsin and thrombin are reportedly able to alter neutrophil behavior. However, little is known of the influence of these proteinases on lactoferrin or IL-8 release from neutrophils. In the present study, we investigated the effects of tryptase, trypsin, thrombin and elastase, and agonist peptides of PAR-1 SFLLR-NH(2) and PAR-2 SLIGKV-NH(2) and tc-LIGRLO-NH(2) on lactoferrin and IL-8 release from highly purified human neutrophils. Flow cytometry shows CD16(+) neutrophils express PAR-1 and PAR-2, but not PAR-3 and PAR-4 proteins. RT-PCR analysis reveals that neutrophils express only PAR-2 genes. Tryptase and trypsin, but not thrombin and elastase, induced significant lactoferrin and IL-8 secretion from neutrophils. SLIGKV-NH(2) and tc-LIGRLO-NH(2), but not SFLLR-NH(2), also stimulated lactoferrin and IL-8 secretion from neutrophils. In conclusion, only a proportion of neutrophils express PAR-1 and/or PAR-2. Tryptase and trypsin-induced lactoferrin and IL-8 secretion from neutrophils most likely occur through activation of PAR-2.  相似文献   

3.
The serine protease thrombin stimulates proliferation in osteoblasts, but decreases alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation. Three thrombin receptors have been identified, protease activated receptor (PAR)-1, PAR-3 and PAR-4; we have previously demonstrated that mouse osteoblasts express PAR-1 and PAR-4. The effect of thrombin on osteoblast proliferation and differentiation was studied to determine which of the thrombin receptors is responsible for the primary effects of thrombin. Primary mouse calvarial osteoblasts from PAR-1-null and wild-type mice, and synthetic peptides that specifically activate PAR-1 (TFFLR-NH2) and PAR-4 (AYPGKF-NH2) were used. Both the PAR-1-activating peptide and thrombin stimulated incorporation of 5-bromo-2'-deoxyuridine (two to four-fold, P < 0.001) and reduced alkaline phosphatase activity (approximately three-fold, P < 0.05) in cells from wild-type mice. The PAR-4-activating peptide, however, had no effect on either alkaline phosphatase activity or proliferation in these cells. Neither thrombin nor PAR-4-activating peptide was able to affect osteoblast proliferation or alkaline phosphatase activity in cells isolated from PAR-1-null mice. The results demonstrate that thrombin stimulates proliferation and inhibits differentiation of osteoblasts through activation of PAR-1. No other thrombin receptor appears to be involved in these effects.  相似文献   

4.
It is commonly accepted that thrombin exerts its proinflammatory properties through the activation of proteinase-activated receptor (PAR)-1, although two other thrombin receptors have been discovered: PAR-3 and PAR-4. In this study, we have investigated the mechanisms and the receptors involved in thrombin-induced leukocyte/endothelial cell interactions by using selective agonists and antagonists of thrombin receptors in an in vivo intravital microscopy system. Topical addition of selective PAR-1 agonists to rat mesenteric venules failed to reproduce the increased leukocyte rolling and adhesion observed after thrombin topical addition. When added together with the selective PAR-1 antagonist RWJ-56110, thrombin was still able to provoke increased leukocyte rolling and adherence. The thrombin-induced leukocyte rolling and adherence was not affected by pretreatment of rats with an anti-platelet serum. Selective PAR-4-activating peptide was able to reproduce the effects of thrombin on leukocyte rolling and adhesion. Intraperitoneal injection of PAR-4-activating peptide also caused a significant increase in leukocyte migration into the peritoneal cavity. In rat tissues, PAR-4 expression was detected both on endothelium and isolated leukocytes. Taken together, these results showed that in rat mesenteric venules, thrombin exerts proinflammatory properties inducing leukocyte rolling and adherence, by a mechanism independent of PAR-1 activation or platelet activation. However, PAR-4 activation either on endothelial cells or on leukocytes might be responsible for the thrombin-induced effects. These findings suggest that PAR-4 activation could contribute to several early events in the inflammatory reaction, including leukocyte rolling, adherence and recruitment, and that in addition to PAR-1, PAR-4 could be involved in proinflammatory properties of thrombin.  相似文献   

5.
Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, has been shown to play a role in wound-healing processes. In this study, we investigated whether protease-activated receptor (PAR)-1 and PAR-2 mediated MIF expression in human endothelial cells. Thrombin, factor Xa (FXa), and trypsin induced MIF expression in human dermal microvascular endothelial cells and human umbilical vein endothelial cells, but other proteases, including kallikrein and urokinase, failed to do so. Thrombin-induced MIF mRNA expression was significantly reduced by the thrombin-specific inhibitor hirudin. Thrombin receptor activation peptide-6, a synthetic PAR-1 peptide, induced MIF mRNA expression, suggesting that PAR-1 mediates MIF expression in response to thrombin. The effects of FXa were blocked by antithrombin III, but not by hirudin, indicating that FXa might enhance MIF production directly rather than via thrombin stimulation. The synthetic PAR-2 peptide SLIGRL-NH(2) induced MIF mRNA expression, showing that PAR-2 mediated MIF expression in response to FXa. Concerning the signal transduction, a mitogen-activated protein kinase kinase inhibitor (PD98089) and a nuclear factor (NF)-kappaB inhibitor (SN50) suppressed the up-regulation of MIF mRNA in response to thrombin, FXa, and PAR-2 agonist stimulation, whereas a p38 inhibitor (SB203580) had little effect. These facts indicate that up-regulation of MIF by thrombin or FXa is regulated by p44/p42 mitogen-activated protein kinase-dependent pathways and NF-kappaB-dependent pathways. Moreover, we found that PAR-1 and PAR-2 mRNA expression in endothelial cells was enhanced by MIF. Furthermore, we examined the inflammatory response induced by PAR-1 and PAR-2 agonists injected into the mouse footpad. As shown by footpad thickness, an indicator of inflammation, MIF-deficient mice (C57BL/6) were much less sensitive to either PAR-1 or PAR-2 agonists than wild-type mice. Taken together, these results suggest that MIF contributes to the inflammatory phase of the wound healing process in concert with thrombin and FXa via PAR-1 and PAR-2.  相似文献   

6.
Proteinase-activated receptors (PARs) are crucial in orchestrating cellular responses to coagulation proteinases, such as thrombin and FXa. Four PARs have been characterized and have been shown to be differentially expressed in mice and humans and between tissues. We have previously shown that in murine lung fibroblasts, PAR-1 is solely responsible for all cellular responses to thrombin and FXa. In contrast, we report here that in primary human lung fibroblasts (pHLFs), known PARs fail to account for all of the cellular responses to thrombin, in particular in the presence of high, but physiologically achievable concentrations of thrombin. We report that pHLFs secrete CCL2 in a PAR-1-dependent manner at low thrombin concentration (~0.3 nM). At or above 10 nM thrombin, pharmacological antagonism (RWJ-58259) fails to block thrombin-induced CCL2 release; whereas PAR-1 cleavage-blocking monoclonal antibodies (ATAP2 and WEDE15) only partially inhibit thrombin-induced CCL2 secretion. In addition, activation of PAR-3, PAR-4, and transactivation of either PAR-2 or EGFR were ruled out as being responsible for thrombin-mediated CCL2 secretion at high yet standard concentrations of the proteinase. We further provide evidence that PAR-1-dependent and PAR-independent signaling involves the rapid phosphorylation of ERK, which in turn is absolutely required for thrombin-induced CCL2 secretion at both low and standard concentration of the proteinase. Our findings suggest the existence of a PAR-independent signaling mechanism in human lung fibroblasts and have important implications for the design of therapeutic strategies aimed at blocking pro-inflammatory signaling responses associated with excessive thrombin generation.  相似文献   

7.
Thrombin activates human platelets through three different membrane receptors, the protease-activated receptors PAR-1 and PAR-4 and the glycoprotein Ib (GPIb)-IX-V complex. We investigated the contribution of these three receptors to thrombin-induced activation of the small GTPase Rap1B. We found that, similarly to thrombin, selective stimulation of either PAR-1 or PAR-4 by specific activating peptides caused accumulation of GTP-bound Rap1B in a dose-dependent manner. By contrast, in PAR-1- and PAR-4-desensitized platelets, thrombin failed to activate Rap1B. Thrombin, PAR-1-, or PAR-4-activating peptides also induced the increase of intracellular Ca(2+) concentration and the release of serotonin in a dose-dependent manner. We found that activation of Rap1B by selected doses of agonists able to elicit comparable intracellular Ca(2+) increase and serotonin release was differently dependent on secreted ADP. In the presence of the ADP scavengers apyrase or phosphocreatine-phosphocreatine kinase, activation of Rap1B induced by stimulation of either PAR-1 or PAR-4 was totally inhibited. By contrast, thrombin-induced activation of Rap1B was only minimally affected by neutralization of secreted ADP. Concomitant stimulation of both PAR-1 and PAR-4 in the presence of ADP scavengers still resulted in a strongly reduced activation of Rap1B. A similar effect was also observed upon blockade of the P2Y12 receptor for ADP, as well as in P2Y12 receptor-deficient human platelets, but not after blockade of the P2Y1 receptor. Activation of Rap1B induced by thrombin was not affected by preincubation of platelets with the anti-GPIbalpha monoclonal antibody AK2 in the absence of ADP scavengers or a P2Y12 antagonist but was totally abolished when secreted ADP was neutralized or after blockade of the P2Y12 receptor. Similarly, cleavage of the extracellular portion of GPIbalpha by the cobra venom mocarhagin totally prevented Rap1B activation induced by thrombin in the presence of apyrase and in P2Y12 receptor-deficient platelets. By contrast, inhibition of MAP kinases or p160ROCK, which have been shown to be activated upon thrombin binding to GPIb-IX-V, did not affect agonist-induced activation of Rap1B in the presence of ADP scavengers. These results indicate that although both PAR-1 and PAR-4 signal Rap1B activation, the ability of thrombin to activate this GTPase independently of secreted ADP involves costimulation of both receptors as well as binding to GPIb-IX-V.  相似文献   

8.
We studied dynamics of cell surface expression ofproteolytically activated thrombin receptor (PAR-1) in human pulmonaryartery endothelial cells (HPAEC). PAR-1 activation was measured bychanges in cytosolic calcium concentration([Ca2+]i)and HPAEC retraction response (determined by real-time transendothelial monolayer electrical resistance).[Ca2+]iincrease in response to thrombin was abolished by preexposure to 25 nMthrombin for >60 min, indicating PAR-1 desensitization, butpreexposure to 25 nM thrombin for only 30 min or to 10 nM thrombin forup to 2 h did not desensitize PAR-1. Exposure to 10 or 25 nM thrombindecreased monolayer electrical resistance 40-60%. Cellspreexposed to 10 nM thrombin, but not those preexposed to 25 nMthrombin, remained responsive to thrombin 3 h later. Loss of cellretractility was coupled to decreased cell surface PAR-1 expression asdetermined by immunofluorescence. Cell surface PAR-1 disappeared uponshort-term (30 min) thrombin exposure but reappeared within 90 minafter incubation in thrombin-free medium. Exposure to 25 nM thrombinfor >60 min prevented rapid cycloheximide-insensitive PAR-1reappearance. Cycloheximide-sensitive recovery of cell surface PAR-1expression required 18 h. Therefore, both duration and concentration ofthrombin exposure regulate the time course of recovery of HPAEC surfacePAR-1 expression. The results support the hypothesis that initialrecovery of PAR-1 surface expression in endothelial cells results froma rapidly mobilizable PAR-1 pool, whereas delayed recovery results fromde novo PAR-1 synthesis. We conclude that thrombin itself regulatesendothelial cell surface PAR-1 expression and that decreased surfaceexpression interferes with thrombin-induced endothelial cell activation responses.

  相似文献   

9.
The proteinase-activated thrombin receptor-1 (PAR-1) belongs to a unique family of G protein-coupled receptors activated by proteolytic cleavage. We studied the effect of PAR-1 activation in the regulation of ion transport in mouse colon in vitro. Expression of PAR-1 in mouse colon was assessed by RT-PCR and immunohistochemistry. To study the role of PAR-1 activation in chloride secretion, mouse colon was mounted in Ussing chambers. Changes in short-circuit current (Isc) were measured in tissues exposed to either thrombin, saline, the PAR-1-activating peptide TFLLR-NH2, or the inactive reverse peptide RLLFT-NH2, before electrical field stimulation (EFS). Experiments were repeated in the presence of either a PAR-1 antagonist or in PAR-1-deficient mice to assess receptor specificity. In addition, studies were conducted in the presence of chloride-free buffer or the muscarinic antagonist atropine to assess chloride dependency and the role of cholinergic neurons in the PAR-1-induced effect. PAR-1 mRNA was expressed in full-thickness specimens and mucosal scrapings of mouse colon. PAR-1 immunoreactivity was found on epithelial cells and on neurons in submucosal ganglia where it was colocalized with both VIP and neuropeptide Y. After PAR-1 activation by thrombin or TFLLR-NH2, secretory responses to EFS but not those to forskolin or carbachol were significantly reduced. The reduction in the response to EFS was not observed in the presence of the PAR-1 antagonist, in PAR-1-deficient mice, when chloride was excluded from the bathing medium, or when atropine was present. PAR-1 is expressed in submucosal ganglia in the mouse colon and its activation leads to a decrease in neurally evoked epithelial chloride secretion.  相似文献   

10.
We addressed the mechanisms of restoration of cell surface proteinase-activated receptor-1 (PAR-1) by investigating thrombin-activated signaling pathways involved in PAR-1 re-expression in endothelial cells. Exposure of endothelial cells transfected with PAR-1 promoter-luciferase reporter construct to either thrombin or PAR-1 activating peptide increased the steady-state PAR-1 mRNA and reporter activity, respectively. Pretreatment of reporter-transfected endothelial cells with pertussis toxin or co-expression of a minigene encoding 11-amino acid sequence of COOH-terminal Galphai prevented the thrombin-induced increase in reporter activity. Pertussis toxin treatment also prevented thrombin-induced MAPK phosphorylation, indicating a role of Galphai in activating the downstream MAPK pathway. Expression of constitutively active Galphai2 mutant or Gbeta1gamma2 subunits increased reporter activity 3-4-fold in the absence of thrombin stimulation. Co-expression of dominant negative mutants of either Ras or MEK1 with the reporter construct inhibited the thrombin-induced PAR-1 expression, whereas constitutively active forms of either Ras or MEK1 activated PAR-1 expression in the absence of thrombin stimulation. Expression of dominant negative Src kinase or inhibitors of phosphoinositide 3-kinase also prevented the MAPK activation and PAR-1 expression. We conclude that thrombin-induced activation of PAR-1 mediates PAR-1 expression by signaling through Gi1/2 coupled to Src and phosphoinositide 3-kinase, and thereby activating the downstream Ras/MAPK cascade.  相似文献   

11.
Human islet-derived precursor cells (hIPCs) and human pancreatic ductal carcinoma (PANC-1) cells can be induced to form aggregates that subsequently differentiate into hormone-expressing islet-like cell aggregates (ICAs). We show that challenge of hIPCs or PANC-1 cells with thrombin or trypsin resulted in stimulation of signaling via the inositol-tris-phosphate second messenger pathway leading to rapid, transient increases in cytosolic calcium ion concentration in the majority of the cells. Because we found that hIPCs, PANC-1 cells, human fetal pancreas, and human adult islets express two protease-activated receptors (PARs), PAR-1 and PAR-2, we tested whether the effects of thrombin and trypsin were mediated, at least in part, by these receptors. Peptide agonists that are relatively specific for PAR-1 (SFLLRN-amide) or PAR-2 (SLIGRL-amide) stimulated increases in inositol phosphates and cytosolic calcium ion concentration, and increased the phosphorylation of Rho, a small G-protein associated with cytoskeletal changes affecting cellular morphology and migration. Most importantly, we show that these agonists increased the rate of hIPC aggregation leading to the formation of more viable, smaller ICAs. Our data show that thrombin and trypsin accelerate aggregation, an early stage of hIPC differentiation in vitro, and imply that pancreatic trypsin and thrombin may be involved in islet development in vivo.  相似文献   

12.
Thrombin is involved in tissue repair through its proteolytic activation of a specific thrombin receptor (PAR-1). Previous studies have shown that serine proteases and their inhibitors are involved in neuromuscular junction plasticity. We hypothesized that thrombin could also be involved during skeletal muscle inflammation. Thus we investigated the expression of PAR-1 in human myoblasts and myotubes in vitro and its regulation by injury-related factors. The functionality of this receptor was tested by measuring thrombin's ability to elicit Ca2+ signals. Western blot analysis and immunocytochemistry demonstrated the presence of PAR-1 in myoblasts but not in myotubes unless they were treated by tumor necrosis factor-alpha (10 ng/ml), interleukin-1beta (5 ng/ml), or transforming growth factor-beta(1) (10 ng/ml). The addition of 10 nM alpha-thrombin evoked a strong Ca2+ signal in myoblasts while a limited response in myotubes was observed. However, in the additional presence of injury-related factors, the amplitude of the Ca2+ response was significantly enhanced, representing 88, 65, 48% of their respective basal level, compared to 27% of that obtained in controls. Moreover, immunochemical studies on human skeletal muscle biopsies of patients suffering from inflammatory myopathies showed an overexpression of PAR-1. These results suggest that PAR-1 synthesis may be induced in response to muscle injury, thereby implicating thrombin signaling in certain muscle inflammatory diseases.  相似文献   

13.
We investigated the regulation of arachidonic acid liberation catalyzed by group-IV cytosolic phospholipase A2 (cPLA2) in human platelets upon stimulation with thrombin through interaction with protease-activated receptor-1 (PAR-1) or glycoprotein Ib. Leupeptin, a protease inhibitor, completely inhibited thrombin-induced arachidonic acid liberation and Ca2+ mobilization, with inhibition of its protease activity. However, preincubation with thrombin in the presence of leupeptin potentiated Ca2+ ionophore-induced arachidonic acid liberation. The preincubation did not affect the intracellular Ca2+ level or cPLA2 activity in response to ionomycin. Human leukocyte elastase, which cleaves glycoprotein Ib, did not inhibit the enhancement of arachidonic acid liberation by thrombin in the presence of leupeptin. However, the effect of thrombin with leupeptin was abolished by a peptide corresponding to residues 54-65 of hirudin (hirudin peptide), which impairs the binding of thrombin to PAR-1. Furthermore, Phe-Pro-Arg chloromethyl ketone (PPACK)-thrombin, which binds to platelets but has no protease activity, also enhanced Ca2+ ionophore-induced arachidonic acid liberation. In contrast, trypsin with leupeptin did not mimic the effect of thrombin with leupeptin, and furthermore trypsin-induced arachidonic acid liberation was insensitive to hirudin peptide. On the basis of the present results, we suggest that thrombin may accelerate cPLA2-catalyzed arachidonic acid liberation through non-proteolytic action toward PAR-1 but not toward glycoprotein Ib in co-operation with the proteolytic action leading to Ca2+ mobilization.  相似文献   

14.
The present study investigated the effects of the ethanolic extract (ESa), fractions, and compounds isolated from Sinningia aggregata in male Swiss mice on carrageenan-induced paw edema, neutrophil migration, mechanical hyperalgesia, formalin-induced nociception, and lipopolysaccharide-induced fever. The ESa did not alter edema, neutrophil migration, or fever at any of the doses tested. However, the ESa reduced phase II of formalin-induced nociception and carrageenan-induced mechanical hyperalgesia. The petroleum ether (PE) and ethyl acetate (EA) fractions and aggregatin D (AgD; isolated from the EA fraction) reduced formalin-induced nociception. Anthraquinones from the PE fraction were ineffective. AgD also inhibited carrageenan-induced mechanical hyperalgesia. Neither the ESa nor AgD altered thermal nociception or motor performance. Local administration of AgD also reduced hyperalgesia induced by carrageenan, bradykinin, tumor necrosis factor-α, interleukin-1β, cytokine-induced neutrophil chemoattractant, prostaglandin E2, and dopamine but not hyperalgesia induced by forskolin or dibutyryl cyclic adenosine monophosphate. The positive control dipyrone reduced the response induced by all of the stimuli. Additionally, glibenclamide abolished the analgesic effect of dipyrone but not the one induced by AgD. AgD did not change lipopolysaccharide-induced nitric oxide production by macrophages or the nociception induced by capsaicin, cinnamaldehyde, acidified saline, or menthol. These results suggest that the ESa has important antinociceptive activity, and this activity results at least partially from the presence of AgD. AgD reduced mechanical hyperalgesia induced by several inflammatory mediators through mechanisms that are different from classic analgesic drugs.  相似文献   

15.
BackgroundSarsasapogenin (Sar) shows good effects on diabetic nephropathy (DN) through inhibition of the NLRP3 inflammasome, yet the potential mechanism is not well known.PurposeThis study was designed to explore the regulation of thrombin and/or its receptor protease-activated receptor 1 (PAR-1) on the NLRP3 inflammasome and NF-κB signaling in DN condition, and further expounded the molecular mechanism of Sar on DN.MethodsStreptozotocin-induced diabetic rats were treated by gavage with Sar (0, 20 and 60 mg/kg) for consecutive 10 weeks. Then urine and serum were collected for protein excretion, creatinine, urea nitrogen, and uric acid assay reflecting renal functions, renal tissue sections for periodic acid-Schiff staining and ki67 expression reflecting cell proliferation, and renal cortex for the NLRP3 inflammasome and NF-κB signaling as well as thrombin/PAR-1 signaling. High glucose-cultured human mesangial cells (HMCs) were used to further investigate the effects and mechanisms of Sar.ResultsSar markedly ameliorated the renal functions and mesangial cell proliferation in diabetic rats, and suppressed activation of the NLRP3 inflammasome and NF-κB in renal cortex. Moreover, Sar remarkably down-regulated PAR-1 in protein and mRNA levels but didn't affect thrombin activity in kidney, although thrombin activity was significantly decreased in the renal cortex of diabetic rats. Meanwhile, high glucose induced activation of the NLRP3 inflammasome and NF-κB, and increased PAR-1 expression while didn't change thrombin activity in HMCs; however, Sar co-treatment ameliorated all the above indices. Further studies demonstrated that PAR-1 knockdown attenuated activation of the NLRP3 inflammasome and NF-κB, and Sar addition strengthened these effects in high glucose-cultured HMCs.ConclusionSar relieved DN in rat through inhibition of the NLRP3 inflammasome and NF-κB by down-regulating PAR-1 in kidney.  相似文献   

16.
Thrombin inhibition protects against liver fibrosis. However, it is not known whether the thrombin profibrogenic effect is due to effects on blood coagulation or to signaling via protease-activated receptors (PARs). We took advantage of the lack of blood coagulation defects in PAR-1-knockout mice. Acute carbon tetrachloride (CCl(4)) toxicity was similar in wild-type (WT), PAR-1(-/-), and PAR-1(+/-) mice as judged by aminotransferase levels, area of liver necrosis, and liver peroxidation measured by Fourier-transformed infrared spectroscopy. Fifteen mice/group received CCl(4) or its solvent for 6 wk (300 microl/kg, 3 times a week). Fibrosis area was increased 10-fold by CCl(4) treatment in WT mice. PAR-1 deficiency protected against fibrosis, with 36% and 56% decrease in PAR-1(+/-) and PAR-1(-/-) mice, respectively (P < 0.001). Similar results were obtained for area of activated fibrogenic cells (64% and 79% decrease in PAR-1(+/-) and PAR-1(-/-) mice, respectively, P < 0.001). These findings were corroborated by measurements of type I collagen, matrix metalloproteinase-2, and PDGF-beta receptor mRNA levels. There was also a significant decrease in T lymphocyte infiltration in PAR-1-deficient mice. Altogether, these results suggest that thrombin profibrogenic effects are independent of effects on blood coagulation and are instead due to direct effects on fibrogenic cells and possibly on T lymphocytes.  相似文献   

17.
Activated factor X (FXa) exerts coagulation-independent actions such as proliferation of vascular smooth muscle cells (SMCs) through the protease-activated receptors PAR-1 and PAR-2. Both receptors are upregulated upon vascular injury but the underlying mechanisms have not been defined. We examined if FXa regulates PAR-1 and PAR-2 in human vascular SMCs. FXa increased PAR-2 mRNA, protein, and cell-surface expression and augmented PAR-2-mediated mitogenesis. PAR-1 was not influenced. The regulatory action of FXa on PAR-2 was concentration-dependent and mimicked by a PAR-2-selective activating peptide. PAR-2 regulation was not influenced by the thrombin inhibitor argatroban or PAR-1 siRNA. FXa increased dichlorofluorescein diacetate fluorescence and 8-isoprostane formation and induced expression of the NADPH oxidase subunit NOX-1. NOX-1 siRNA prevented FXa-stimulated PAR-2 regulation, as did ebselen and cell-permeative and impermeative forms of catalase. Exogenous H2O2 increased PAR-2 expression and mitogenic activity. FXa promoted nuclear translocation and PAR-2/DNA binding of nuclear factor κB (NF-κB); NF-κB inhibition prevented PAR-2 regulation by FXa. FXa also promoted PAR-2 mRNA stabilization through increased human antigen R (HuR)/PAR-2 mRNA binding and cytoplasmic shuttling. HuR siRNA abolished FXa-stimulated PAR-2 expression. Thus FXa induces functional expression of PAR-2 but not of PAR-1 in human SMCs, independent of thrombin formation, via a mechanism involving NOX-1-containing NADPH oxidase, H2O2, NF-κB, and HuR.  相似文献   

18.
Among the four protease-activated receptors (PARs), PAR-1 plays an important role in normal lung functioning and in the development of lung diseases, including fibrosis. We compared the expression and functional activity of PARs in normal and fibrotic human lung fibroblasts. Both normal and fibrotic cells express PAR-1, -2, and -3, with PAR-2 showing the lowest level. There was no significant difference between normal and fibrotic fibroblasts in expression levels of PAR-1 and PAR-3, whereas a fourfold higher expression level of PAR-2 was observed in fibrotic cells compared with normal cells. Ca(2+) imaging studies revealed apparently only PAR-1-induced Ca(2+) signaling in lung fibroblasts. PAR-1 agonists, thrombin and synthetic activating peptide, induced concentration-dependent Ca(2+) mobilization with EC(50) values of 5 nM and 1 microM, respectively. The neutrophil protease cathepsin G produced a transient Ca(2+) response followed by disabling PAR-1, whereas elastase did not affect Ca(2+) level. PAR-1 activation by thrombin or receptor-activating peptide downregulated expression of all three PARs in lung fibroblasts, with maximal effect at 3-6 h, whereas expression returned toward basal level after 24 h. Furthermore, PAR-1 agonists dose dependently increased PGE(2) secretion from lung fibroblasts and induction of cyclooxygenase-2 expression. We then found that PGE(2) downregulated expression of all three PARs. The effect of PGE(2) was continuously growing with time. Furthermore, PGE(2) exerts its effect through the EP2 receptor that was confirmed using the selective EP2 agonist butaprost. This novel autocrine feedback mechanism of PGE(2) in lung fibroblasts seems to be an important regulator in lung physiology and pathology.  相似文献   

19.
Chronic stress plays an important role in the development and exacerbation of symptoms in functional gastrointestinal disorders. To better understand the mechanisms underlying this relationship, we aimed to characterize changes in visceral and somatic nociception, colonic motility, anxiety-related behavior, and mucosal immune activation in rats exposed to 10 days of chronic psychological stress. Male Wistar rats were submitted daily to either 1-h water avoidance (WA) stress or sham WA for 10 consecutive days. The visceromotor response to colorectal distension, thermal somatic nociception, and behavioral responses to an open field test were measured at baseline and after chronic WA. Fecal pellets were counted after each WA stress or sham WA session as a measure of stress-induced colonic motility. Colonic samples were collected from both groups and evaluated for structural changes and neutrophil infiltration, mast cell number by immunohistochemistry, and cytokine expression by quantitative RT-PCR. Rats exposed to chronic WA (but not sham stress) developed persistent visceral hyperalgesia, whereas only transient changes in somatic nociception were observed. Chronically stressed rats also exhibited anxiety-like behaviors, enhanced fecal pellet excretion, and small but significant increases in the mast cell numbers and the expression of IL-1beta and IFN-gamma. Visceral hyperalgesia following chronic stress persisted for at least a month. Chronic psychological stress in rats results in a robust and long-lasting alteration of visceral, but not somatic nociception. Visceral hyperalgesia is associated with other behavioral manifestations of stress sensitization but was only associated with minor colonic immune activation arguing against a primary role of mucosal immune activation in the maintenance of this phenomenon.  相似文献   

20.
We examined the mechanism by which protease-activated receptor (PAR)-1 is desensitized by comparing the effect of thrombin and the soluble agonist peptide SFLLRN on Ca(2+)responses in HSY-EA1 cells. Thrombin-induced increases in cytosolic Ca(2+)concentrations ([Ca(2+)](i)) returned to basal levels within 60 s, but SFLLRN generated a sustained [Ca(2+)](i)elevation. Interestingly, thrombin-desensitized cells partially retained their ability to respond to SFLLRN. We desensitized PAR-2 by pretreating cells with SLIGKV to confirm that this response was not due to PAR-2, which can recognize SFLLRN. The highly specific PAR-1 agonist peptide TFLLR also increased [Ca(2+)](i)in PAR-2-desensitized cells pretreated with thrombin. These observations indicate that thrombin disarms PAR-1 from further proteolytic activation, but leaves the receptor responsive for non-tethered ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号