首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
During vertebrate embryogenesis, the newly formed mesoderm is allocated to the paraxial, intermediate, and lateral domains, each giving rise to different cell and tissue types. Here, we provide evidence that the forkhead genes, Foxc1 and Foxc2, play a role in the specification of mesoderm to paraxial versus intermediate fates. Mouse embryos lacking both Foxc1 and Foxc2 show expansion of intermediate mesoderm markers into the paraxial domain, lateralization of somite patterning, and ectopic and disorganized mesonephric tubules. In gain of function studies in the chick embryo, Foxc1 and Foxc2 negatively regulate intermediate mesoderm formation. By contrast, their misexpression in the prospective intermediate mesoderm appears to drive cells to acquire paraxial fate, as revealed by expression of the somite markers Pax7 and Paraxis. Taken together, the data indicate that Foxc1 and Foxc2 regulate the establishment of paraxial versus intermediate mesoderm cell fates in the vertebrate embryo.  相似文献   

5.
6.
7.
8.
9.
Foxc2 is a single-exon gene and a key regulator in development of multiple organs, including kidney. To avoid embryonic lethality of conventional Foxc2 knockout mice, we conditionally deleted Foxc2 in kidneys. Conditional targeting of a single-exon gene involves the large floxed gene segment spanning from promoter region to coding region to avoid functional disruption of the gene by the insertion of a loxP site. Therefore, in ES cell clones surviving a conventional single-selection, e.g., neomycin-resistant gene (neo) alone, homologous recombination between the long floxed segment and target genome results in a high incidence of having only one loxP site adjacent to the selection marker. To avoid this limitation, we employed a double-selection system. We generated a Foxc2 targeting construct in which a floxed segment contained 4.6 kb mouse genome and two different selection marker genes, zeocin-resistant gene and neo, that were placed adjacent to each loxP site. After double-selection by zeocin and neomycin, 72 surviving clones were screened that yielded three correctly targeted clones. After floxed Foxc2 mice were generated by tetraploid complementation, we removed the two selection marker genes by a simultaneous-single microinjection of expression vectors for Dre and Flp recombinases into in vitro-fertilized eggs. To delete Foxc2 in mouse kidneys, floxed Foxc2 mice were mated with Pax2-Cre mice. Newborn Pax2-Cre; Foxc2loxP/loxP mice showed kidney hypoplasia and glomerular cysts. These results indicate the feasibility of generating floxed Foxc2 mice by double-selection system and simultaneous removal of selection markers with a single microinjection.  相似文献   

10.
11.
12.
13.
14.
Syngnathia (bony fusion of the upper and lower jaw) is a rare human congenital condition, with fewer than sixty cases reported in the literature. Syngnathia typically presents as part of a complex syndrome comprising widespread oral and maxillofacial anomalies, but it can also occur in isolation. Most cartilage, bone, and connective tissue of the head and face is derived from neural crest cells. Hence, congenital craniofacial anomalies are often attributed to defects in neural crest cell formation, survival, migration, or differentiation. The etiology and pathogenesis of syngnathia however remains unknown. Here, we report that Foxc1 null embryos display bony syngnathia together with defects in maxillary and mandibular structures, and agenesis of the temporomandibular joint (TMJ). In the absence of Foxc1, neural crest cell derived osteogenic patterning is affected, as osteoblasts develop ectopically in the maxillary prominence and fuse with the dentary bone. Furthermore, we observed that the craniofacial musculature is also perturbed in Foxc1 null mice, which highlights the complex tissue interactions required for proper jaw development. We present evidence that Foxc1 and Fgf8 genetically interact and that Fgf8 dosage is associated with variation in the syngnathic phenotype. Together our data demonstrates that Foxc1 – Fgf8 signaling regulates mammalian jaw patterning and provides a mechanistic basis for the pathogenesis of syngnathia. Furthermore, our work provides a framework for understanding jaw patterning and the etiology of other congenital craniofacial anomalies, including temporomandibular joint agenesis.  相似文献   

15.
16.
Betaglycan is an accessory receptor for the transforming growth factor-β (TGFβ) superfamily, many members of which play key roles in kidney development. The purpose of this study was to define the role of this co-receptor on fetal murine kidney development. Stereological examination of embryonic and adult betaglycan heterozygous kidneys revealed augmented nephron number relative to littermate controls. Fetal heterozygous kidneys exhibited accelerated ureteric branching, which correlated with augmented nephron development at embryonic day (e) 15.5. In contrast, betaglycan null kidneys exhibited renal hypoplasia from e13.5 and reduced nephron number at e15.5. Quantitative real-time PCR analysis of e11.5-e14.5 kidneys demonstrated that heterozygous kidneys exhibited a transient decrease in Bmp4 expression at e11.5 and a subsequent cascade of changes in the gene regulatory network that governs metanephric development, including significant increases in Pax2, Eya1, Gdnf, Ret, Wnt4, and Wt1 expression. Conversely, gene expression in null kidneys was normal until e13.5, when significant reductions were detected in the expression of Bmp4 as well as other key metanephric regulatory genes. Tgfb1 and Tgfb2 mRNA expression was down-regulated in both nulls and heterozygotes at e13.5 and e14.5. The opposing morphological and molecular phenotypes in betaglycan heterozygote and null mutants demonstrate that the levels of betaglycan must be tightly regulated for optimal kidney development.  相似文献   

17.
18.
19.
We have examined the dynamic expression of Sonic hedgehog (Shh) in limb buds of the Hemimelic extra-toes (Hx) mutant. An ectopic domain of expression appears in the limb bud at embryonic day 11.5, which is not restricted to the anterior mesenchyme as in other polydactylous mutants, but extends along the entire apical ectodermal ridge. No difference in expression was observed between heterozygotes and homozygotes. This ectopic expression domain forms later and is maintained longer than the normal one. We verified that the Shh signal is properly transduced in the ectopic expression domain by analysing the expression of downstream target genes and provide evidence that the ectopic domain is functional. Interactions between Msx1 and Hx were investigated by constructing a double mutant strain. Embryos from this strain exhibit little difference in Shh expression compared to Hx simple mutants. However, homozygous Msx1/Hx double mutants exhibit a postaxial polydactyly at birth, demonstrating that the two genes interact.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号