首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The leukotriene, LTC4, exerts a stimulatory effect on chloride transport in the frog cornea. In the work described here, the mechanism of action of LTC4 to stimulate chloride transport was studied.In corneas pretreated with indomethacin, the effect of LTC4 was abolished, suggesting the involvement of cyclo-oxygenase products in the response. Incubation of corneas with LTC4 resulted in a significant stimulation in PGE2 synthesis, as determined by TLC-autoradiography and radioimmunoassay. In addition, LTC4 was found to stimulate cAMP synthesis in the cornea, and this stimulation was blocked with indomethacin. PGE2 was previously shown by us to be the dominant cyclo-oxygenase product formed in the frog cornea, and is capable of stimulating cAMP and chloride transport. We suggest that LTC4 stimulation of chloride transport is mediated via activation of the cyclooxygenase pathway, resulting in enhanced PGE2 synthesis. Elevated PGE2 levels induce cAMP synthesis, and ultimately, the stimulation of chloride transport. Further, the activation of cyclo-oxygenase was found to be dependent on phospholipase A2 activity. This was shown by the inhibition of the LTC4 effect in the presence of quinacrine. Similarly, inhibition of the LTC4 effect in the presence of trifluoperazine suggests that cyclo-oxygenase activation by LTC4 may be mediated via calmodulin. We have previously demonstrated that the frog cornea has the biosynthetic capacity to produce LTC4. Therefore LTC4 may function as an endogenous regulator of chloride transport in this tissue.  相似文献   

2.
Summary Prostaglandins are known to stimulate the active sodium absorption in frog skin. In this paper it is shown that prostaglandin E2 (PGE2) stimulates an active secretion of Cl, Na+, and K+ from the skin glands inRana esculenta. The active Cl secretion is enhanced more than the Na and K secretion. Therefore, in skins where the Na absorption is inhibited by amiloride, the addition of PGE2 results in an increase in the short-circuit current (SCC). The PGE2-stimulated Cl secretion could be inhibited by the presence of ouabain or furosemide in the basolateral solution or diphenylamine-2-carboxylate in the apical solution. The PGE2-stimulated Cl secretion was enhanced by the phosphodiesterase inhibitor, theophylline, indicating that the effect of PGE2 was caused by an increase in the intracellular cAMP level in the gland cells. The calcium ionophore A23187, which increases the PGE2 synthesis in frog skin, stimulated the glandular Cl secretion. This secretion could be blocked by the prostaglandin synthesis inhibitor indomethacin, indicating that A23187 acts by increasing the prostaglandin synthesis and not by a direct action of Ca2+ ionsper se. The net water flow (J w) and the Cl secretion were measured simultaneously under the conditions outlined above. The stimulation, inhibition, and the time-course of the outward-directedJ w were similar to the change observed for the Cl secretion. These results show that PGE2 stimulates a glandular secretion of Cl and water in frog skin, probably by increasing the cAMP level in the gland cells.  相似文献   

3.
1. The role of prostaglandins and intracellular Ca2+ in regulation of active transepithelial sodium transport in frog skin were studied by examinations of effects of the calcium ionophore A23187 on short-circuit current (SCC) and intracellular voltage. 2. A23187 and arachidonic acid induced a marked increase in both SCC and prostaglandin E2 synthesis. 3. In indomethacin treated skins A23187 did not stimulate but on the contrary inhibited the basal SCC. 4. The A23187-induced increase in SCC was associated with a decrease in the fractional resistance of the apical membrane and a depolarization of the cells. 5. In skins pretreated with indomethacin, the A23187 induced inhibition of SCC coincided with a slight hyperpolarization of the cellular potential and an increase in fractional resistance of the apical membrane.  相似文献   

4.
The effect of cAMP on prostaglandin production may depend on cell types. To clarify the relationship between PG and cAMP, we examined arachidonate's effects on PG synthesis and intracellular cAMP accumulation in monolayers of rat gastric mucosal cells. These cells produced PGE2, PGI2 and thromboxaneA2 (TXA2) in amounts of 316±18, 100±7 and 30±5 pg per 105 cells in 10 min, respectively, in response to 10μM arachidonic acid (AA). The production of these PG, however, leveled off subsequently. Cells initially exposed to AA responded poorly to a subsequent stimulation by AA. AA simultaneously stimulated intracellular cAMP accumulation; this stimulatory effect on cAMP production was abolished by the pretreatment with indomethacin. Nevertheless, the pretreatments with dibutyryl cAMP (0.1–5mM) did not alter the amount of subsequent AA-induced PGE2 production. Furthermore, the preincubation with 1mM isobutyl methyl xanthine also failed to affect PGE2 synthesis, while it increased intracellular cAMP accumulation. Our studies suggest (1) AA stimulates intracellular cAMP formation in cultured gastric mucosal cells, linked with conversion of AA to cyclooxygenase metabolites, (2) AA-induced PG production is limited in these cells, and (3) it seems, however, unlikely that intracellular cAMP modulates AA metabolism to PG.  相似文献   

5.
Intratesticular injection of prostaglandin E2(PGE2) and F (PGF) caused stimulation of ornithine decarboxylase (ODC) activity in the testis of immature rats. PGE2 at a dose of 10 μg per testis was maximally effective 2 hours after the injection. Dibutyryl cyclic AMP (cAMP) and 1 methyl, 3-isobutyl xanthine (MIX), a phosphodiesterase inhibitor, also stimulated ODC activity. Simultaneous injection of PGE2 and FSH or LH caused additional stimulation of ODC activity. Similarly injection of PGE2 in addition to cAMP or MIX also caused increased stimulation of ODC. Indomethacin (IM, 60 μg/testis) inhibited LH, FSH or cAMP induced ODC activity. However, IM at the same dose inhibited the synthesis of total proteins. These results suggest that PGE2 and PGF stimulate the activity of ODC. The action of prostaglandins may be independent of the action of gonadotropic hormones. cAMP appears to mediate the action of prostaglandins in the testis of rat.  相似文献   

6.
The effects of various prostaglandins on ornithine decarboxylase (ODC) activity in mammary gland explants from mid-pregnant mice have been tested. PGE1, E2 and I2 elicit a concentration-dependent stimulation of ODC activity. The minimally effective concentrations are 0.5 ug/ml for PGE1 and E2, and 50 ug/ml for PGF and 6-keto-PGF. The PGE1 effect had a time course identical to that of prolactin. The prolactin action on ODC activity was attentuated by indomethacin, an inhibitor of prostaglandin biosynthesis. Arachidonic acid stimulation ODC activity and its effect was abolished by indomethacin. The phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine, potentiated the PGE1 effect on ODC activity. The results suggest that the prostaglandins may modulate prolactin's action of ODC activity via a cAMP dependent mechanism.  相似文献   

7.
Prostaglandins are important in signaling pathways involved in modulating the rates of Na+ transport in a diverse group of tissues possessing apical membrane epithelial channels. PGE2 is known to cause either stimulation, inhibition or transient stimulatory changes of Na+ transport. We have continued our studies of frog skins that are known to respond to forskolin and PGE2 with large steady-state increases of transport and have used noninvasive methods of blocker-induced noise analysis of Na+ channels to determine their channel densities (N T ) and open probabilities (P o ). In the absence of exogenous hormones, baseline rates of Na+ transport are especially high in scraped skins (R. pipiens pipiens) studied in the fall of the year. Na+ transport was inhibited by indomethacin and by removal of the unstirred layers of the corium (isolated epithelia) alone suggesting that PGE2 is responsible for the sustained and elevated rates of transport in scraped skins. Changes of transport caused by indomethacin, forskolin or PGE2 were unquestionably mediated by considerably larger changes of N T than compensatory changes of P o . Since cAMP caused no change of P o in tissues pretreated with indomethacin, PGE2 appears in this tissue to serve a dual role, increasing the steady state N T by way of cAMP and decreasing P o by unknown mechanisms. Despite appreciable PGE2-related decreases of P o , the net stimulation of transport occurs by a considerably greater cAMP-mediated increase of N T . Received: 28 February 1996/Revised: 22 August 1996  相似文献   

8.
While many observations indicate that prostaglandins may act as positive regulators of hepatocyte proliferation, the underlying mechanisms are not known. We have examined some of the signal pathways in the growth response induced by prostaglandins in hepatocytes, with particular focus on adenylyl cyclase and phosphoinositide-specific phospholipase C. Adult rat hepatocytes were cultured as primary monolayers in serum-free medium in the presence of EGF and insulin. PGE2 or PGF (added 0-3 h after plating) enhanced the incorporation of [3H]-thymidine into DNA (measured at 50 h); at 100 γM the stimulation was about threefold. PGI2 and PGD2 also showed significant but smaller stimulatory effects. No significant increase in the level of cyclic AMP (cAMP) was detected in response to any of the prostaglandins. Low concentrations of glucagon (0.1-10 nM), a potent activator of hepatic adenylyl cyclase, or 8-bromo-cAMP (0.1-10 γM) enhanced the DNA synthesis. When 8-bromo-cAMP was used in maximally effective concentrations, no further stimulation was obtained by combining it with glucagon, whereas the effects of PGE2 and 8-bromo-cAMP were completely additive. All the prostaglandins also showed additivity with the effect of glucagon on the DNA synthesis. PGE2, PGF, PGI2, and PGD2 increased intracellular inositol-1,4,5-trisphosphate (InsP3), with a relative order of efficacy roughly corresponding to their activity as stimulators of DNA synthesis. Increases in cytosolic free Ca2+, as measured in single cells, were elicited in a majority of the hepatocytes by all these prostaglandins at 1 γM. Supramaximal concentrations of vasopressin, a strong activator of phospholipase C in hepatocytes, acted additively with PGE2 on the DNA synthesis. Pretreatment of the hepatocytes with a concentration of pertussis toxin that prevented the inhibitory effect of PGE2 on glucagon-induced cAMP accumulation did not abolish the ability of PGE2 to stimulate the DNA synthesis. The results do not support a role for adenylyl cyclase activation in the stimulatory effect of prostaglandins on hepatocyte growth. While the data are compatible with an involvement of phosphoinositide-specific phospholipase C in the growth-promoting effect of prostaglandins in cultured rat hepatocytes, they suggest this may not be the sole mechanism. © 1995 Wiley-Liss, Inc.  相似文献   

9.
The hypothesis that prostaglandins have a modulatory role in adrenergic neurotransmitter release was tested in the anesthetized dog. Inhibition of prostaglandin synthesis with indomethacin (10 mg/kg, i.v.) did not alter positive chronotropic responses to cardioaccelerator nerve stimulation or blood pressure responses to exogenous norepinephrine. In the presence of indomethacin, infusions of PGE2 (0.01 and 0.1 μg kg−1 min−1) also failed to influence the responses to cardioaccelerator nerve stimulation although the blood pressure responses to exogenous norepinephrine were reduced in a dose-related manner. It was concluded that endogenous prostaglandins and exogenous PGE2, the purported physiological inhibitor of neurotransmitter release in cardiac tissue, do not play a role in modulating chronotropic responses during cardioaccelerator nerve stimulation in the anesthetized dog.  相似文献   

10.
The effects of exogenous prostaglandin E1 (PGE1) or prostaglandin E2 (PGE2) were studied in the isolated perfused rat liver and in the intact canine liver in order to determine the possible physiological role of prostaglandins on hepatic carbohydrate and lipid metabolism. The data indicate that PGE1 and PGE2 did not stimulate cyclic AMP (cAMP) and cyclic GMP (cGMP) concentrations in intact dog liver and PGE1 failed to stimulate cAMP or cGMP in fed or fasted perfused rat liver. PGE1 did not promote hyperglycemia, glycogenolysis, lipolysis, or prevent epinephrine-induced hyperglycemia in the isolated perfused rat liver. Other known glycogenolytic agents including glucagon and epinephrine increased cAMP and glycogenolysis in the same perfusion system. This study does not support a physiologic role for PGE1 on hepatic glycogenolysis or lipolysis. If PGE1 subsequently is found to influence other metabolic parameters such as lipogenesis, gluconeogenesis, ureogenesis or amino acid transport in isolated perfused liver, such alterations would probably occur independent of changes in cyclic nucleotide activity.  相似文献   

11.
Summary The effect of papaverine, an inhibitor of the phosphodiesterase responsible for breakdown of cAMP, on the transepithelial sodium transport across the isolated frog skin was investigated.Serosal addition of papaverine caused initially an increase in the short-circuit current (SCC), a doubling of the cellular cAMP content and a depolarization of the intracellular potential under SCC conditions (V scc).The initial increase in the SCC was followed by a pronounced decrease both in the SCC and in the natriferic action of antidiuretic hormone (ADH), but papaverine had no inhibitory effect on the ability of ADH to increase the cellular cAMP content. As SCC declines, no hyperpolarization was observed.The I/V relationship across the apical membrane during the inhibitory phase, revealed that papaverine reduces the sodium permeability of the apical membrane (P Na a )as well as intracellular sodium concentration. These observations and the previously noted effect of papaverine on V scc indicates that papaverine must have an effect on the cellular Cl or K permeability.The basolateral Na,K,2Cl cotransporter was blocked with bumetanide, which should bring the cellular chloride in equilibrium. Bumetanide had no effect on basal SCC and V scc. When papaverine was added to skins preincubated with bumetanide, the effect of papaverine on SCC and V scc was unchanged. Therefore, the depolarization of V scc, observed during the papaverine induced inhibition of the SCC, must be due to a reduction in the cellular K permeability.In conclusion, it is suggested that papaverine reduces the sodium permeability of the apical membrane and the potassium permeability of the basolateral membrane of the frog skin epithelium.  相似文献   

12.
Summary Prostaglandins (E1, E2 and F2) stimulated the chloride transport of the frog corneal epithelium with maximal effects at 10–5 m in the aqueus side. This stimulation does not occur in Cl-free solutions and the net36Cl flux increased proportionally to the short-circuit current. Polyphloretin phosphate (PPP) and diphloretin phosphate (DPP) inhibited the response if added within 3 min before PGE1. The maximal response to epinephrine 10–5 m and dibutyryl cyclic AMP 10–3 m was not changed by further addition of prostaglandins, but these drugs produced their full effect when administered at the peak of the response of prostaglandins. The maximal response to theophylline 10–5 m was increased by PGE1. PPP and DPP did not modify the response to epinephrine. Prostaglandin stimulation of the chloride transport was accompanied by increased light transmission through partially opaque corneas. The known release of prostaglandins in the aqueous humor can be associated to a direct action on the corneal epithelium manifested in the activation described herein.  相似文献   

13.
The level of plasma corticosterone attained in hypophysectomized rats stimulated with ACTH was significantly reduced by pretreatment with indomethacin, an inhibitor of prostaglandin synthesis. This effect was not seen in animals stimulated with dibutyryl cyclic AMP. Intraperitoneal injection of prostaglandin E2 to indomethacin treated rats restored the normal response to ACTH stimulation. However, PGE2 itself did not have any significant effect on plasma corticosterone levels. These findings suggest that prostaglandins are involved, perhaps in an allosteric fashion, in the mechanism of action of ACTH.  相似文献   

14.
To elucidate the role of prostaglandins in adrenal steroidogenesis, we studied aldosterone and corticosterone responses to
of prostaglandin E2 (PGE2), prostaglandin F (PGF), prostacyclin (PGI2), and arachidonic acid (AA) in collagenase dispersed rat adrenal capsular and decapsular cells. Whereas adrenocorticotrophic hormone (ACTH) and angiotensin II (AII) stimulated aldosterone production in capsular cells and ACTH stimulated corticosterone production in decapsular cells in a dose dependent fashion, aldosterone and corticosterone production were not stimulated significantly by PGE2, PGF, PGI2, and AA. Although preincubation of dispersed adrenal cells with indomethacin ( ) markedly inhibited PGE2 synthesis, ACTH- and AII-stimulated aldosterone production and ACTH-stimulated corticosterone production were not attenuated despite prostaglandin blockade. These results indicate that prostaglandins are unlikely to play an important role in adrenal steroidogenesis.  相似文献   

15.
The ability of n-3 PUFA to competitively inhibit the use of arachidonic acid (AA) for membrane phospholipid synthesis and prostaglandin E2 (PGE2) production has been well demonstrated in single cell models. In the present study, we investigated the metabolic competition between AA and eicosapentaenoic acid (EPA) for PGE2 synthesis in a rat hepatocyte–Kupffer cell (HPC/KC) co-culture system when the cellular oxidation capacity was enhanced by exogenous l-carnitine. We demonstrate that in the absence of l-carnitine, 1) β-oxidation rates of EPA and AA were comparable in HPCs and in KCs; 2) AA and not EPA was preferentially incorporated into glycerolipids; and 3) addition of EPA significantly decreased AA-dependent PGE2 synthesis in HPCs and cyclooxygenase-2 (COX-2) expression in co-cultured HPCs/KCs. However, enhancing the cellular oxidation capacity by the addition of l-carnitine 1) significantly increased β-oxidation of EPA in HPCs, but only marginally elevated the oxidation of AA in HPCs and the oxidation of both fatty acids in KCs; 2) decreased the esterification, but did not alter the preferential incorporation of AA into glycerolipids; and 3) alleviated the significant competitive inhibition of AA-dependent PGE2 synthesis and COX-2 expression by EPA. Taken together, the results strongly suggest that l-carnitine affects competition between AA and EPA in PG synthesis in liver cells by enhancing oxidation of EPA in HPCs. This implies that the beneficial effects of n-3 PUFA, especially EPA, are affected by the cellular oxidation capacity.  相似文献   

16.
The relationship between aldosterone production and prostaglandin E2 synthesis was evaluated using the responses of isolated rat adrenal glomerulosa cells to angiotensin II, ACTH and potassium. Simultaneous PGE2 and aldosterone measurements were made during timed incubations with these stimuli, and in incubations with arachidonic acid, meclofenamate, indomethacin, and aminoglutethamide. PGE2 and aldosterone production were assessed by radioimmunoassay. We were not able to demonstrate stimulation of PGE2 by angiotensin II, ACTH, or potassium despite significant increments in aldosterone production with these stimuli. Arachidonic acid enhanced PGE2 synthesis, but had no effect on aldosterone release. Indomethacin and meclofenamate inhibited aldosterone secretion. Aminoglutethimide depressed aldosterone production, but had little effect on PGE2 levels in the media.These studies demonstrate that dienoic prostaglandins play no direct role in aldosterone production stimulated by angiotensin II, ACTH, or potassium in rat adrenal glomerulosa cells. Since inhibitors of cyclo-oxygenase decreased aldosterone synthesis, it is possible that fatty acids other than arachidonic acid may be cyclo-oxygenated to products which regulate aldosterone production.  相似文献   

17.
The role of prostaglandins (PGs) in calcium-induced corticosteroid secretion by frog adrenal (interrenal) gland examined using a perifusion technique. Increasing concentrations of CaCl2 (4–10 mM) stimulated in a dose-dependent manner aldosterone, PGE2 and 6-keto-PGF production, whereas TXB2 was not affected. The kinetics of the adrenal response to CaCl2 indicated that the increase in PG output always preceded that of steroid. Administration of cobalt (4 mM), a calcium-channel inhibitor, blocked the calcium-induced stimulation of PGs and corticosteroids. Infusion of indomethacin (5 × 10−6M), a specific cyclooxygenase inhibitor, significantly decreased the basal production of PGs and steroids, and prevented the stimulatory effect of CaCl2 (6 mM). Infusion of the calcium ionophore A 23187 (10−6 M), for 20 min, induced a marked stimulation of PG and steroid production. Taken together, these data support the notion that biosynthesis of prostaglandins is associated with calcium-induced corticosteroid secretion in frog adrenal cells.  相似文献   

18.
Lipopolysaccharide (LPS) stimulated prostaglandin E2 (PGE2) formation and induction of cyclooxygenase-2 (COX-2) expression without changing the levels of COX-1 protein in rat peritoneal macrophages. Non-steroidal anti-inflammatory drugs (NSAIDs) (nimesulide, indomethacin and ibuprofen) strongly inhibited LPS-stimulated PGE2 production without any effect on COX-2 protein expression, suggesting that NSAIDs are active in inhibiting the ability of COX-2 to convert arachidonic acid (AA) endogenously released in response to LPS stimulation. Exogenous AA can be converted to PGE2 by both COX isoforms even in LPS-stimulated macrophages. NSAIDs inhibited PGE2 production from exogenous AA mediated by both COX-1 and COX-2. However, the two isoforms interacted differentially with different NSAIDs. Furthermore, NSAIDs were distinctly more active in inhibiting PGE2 production from endogenous AA than that from exogenous AA. These data suggest that PGE2 production through COX-2 from exogenous AA may not be subject to the same regulatory processes as that from endogenous AA and the two metabolic processes may be differentially sensitive to different NSAIDs.  相似文献   

19.
Prostaglandin E2 (PGE2) facilitated sexual behavior in estrogen-primed ovariectomized or ovariectomized-adrenalectomized rats. Administration of indomethacin, an inhibitor of prostaglandin synthesis, attenuated the effectiveness of estrogen and progesterone in inducing sexual receptivity in ovariectomized rats. Concurrent administration of PGE2 with indomethacin restored sexual behavior only when administered early in the estrogen-priming period but not if administered along with the progesterone. Our studies support the likelihood of a role of prostaglandins in the control of sexual behavior in the female rat.  相似文献   

20.
The prostaglandin synthesis inhibitors, indomethacin and eicosa-5,8,11, 14-tetraynoic acid (ETA), have been tested on the isolated lamb ductus arteriosus at low and high PO2 levels. Both compounds produced a gradual contraction of the hypoxic vessel, and at equal doses the effect of indomethacin was stronger. The maximal tension output of the hypoxic tissue under indomethacin was equal to that of the oxygen-contracted control. ETA- and indomethacin-treated preparations contracted further upon transfer from a low to a high oxygen environment, and the response under indomethacin exceeded significantly control values. Control preparations were relaxed markedly by PGE2 in low oxygen but showed little or no response in high oxygen. In contrast, preparations pretreated with the inhibitors retained their sensitivity to PGE2 during exposure to high oxygen. The data are consistent with the idea that E-type prostaglandins play a role in the regulation of the intrinsic tone of the ductus arteriosus during foetal life. It is also suggested that the sensitivity of ductal muscle to E-type prostaglandins is controlled by the rate of endogenous prostaglandin formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号