首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzyme immobilization by radiation-induced polymerization of hydrophilic glass-forming monomers, such as 2-hydroxyethyl methacrylate, was studied. Enzyme radiation damage could be sufficiently retarded at low temperatures. The immobilized enzyme activity yield was markedly higher at low temperature than at higher temperature polymerization. At low temperatures the polymerized composite had a porous structure owing to ice crystallization which depends on the monomer concentration. It was deduced that the enzyme was partially trapped on the polymer surface, partially isolated in the pore, and partially occluded inside the polymer matrix. A decrease in activity caused by enzyme leakage was observed with repeated use in enzyme reactions where the composites had a large porosity. The activity yield showed a maximum at certain optimum porosities, i.e., at optimum monomer concentrations. Continuous enzyme reaction was preferably carried out using immobilized enzyme columns.  相似文献   

2.
The effect of immobilization with various glass-forming monomers on the stability of PS II activity of spinach chloroplast was investigated. PS II activity (O2 evolution due to the Hill reaction) was reduced very slightly by the addition of monomers including polyethyleneglycol (PEG). Immobilization of chloroplast was done with hydrophobic monomer as well as hydrophilic monomer and activity of immobilized chloroplast increased with decreasing monomer concentration as far as the polymerization was possible. The activity of immobilized chloroplast was very high and it decayed far more gradually with the storage time in comparison with the decay of unimmobilized chloroplast and was retained more than 30 days. The optimum monomer concentration for immobilization was about 10%. Thermostability of chloroplast also increased greatly by immobilization with these monomers, especially hydrophilic monomers.  相似文献   

3.
Immobilization of Streptomyces phaerochromogenes was studied by radiation-induced polymerization of 2-hydroxyethyl methacrylate at low temperatures. Radiation damage of the enzyme could be avoided by choosing irradiation at low temperatures. The enzymatic activity of immobilized cells increased remarkably with a decrease in the irradiation temperature of about -24 degrees C. In constrast to the case of cell-free enzyme immobilization, the most characteristic case was than in these immobilized cells, the enzymatic activity did not decrease with repeated use even in the composite obtained at much lower monomer concentrations. Another characteristic of immobilized cells was the increase in enzymatic activity in the initial stage of repeated use, which could be attributed to the swelling effect of the polymer matrix, thereby increasing the enzymatic activity of whole cells.  相似文献   

4.
The feasibility of laccase production by immobilization of Pleurotus ostreatus 1804 on polyurethane foam (PUF) cubes with respect to media composition was studied in both batch and reactor systems. Enhanced laccase yield was evidenced due to immobilization. A relatively high maximum laccase activity of 312.6 U was observed with immobilized mycelia in shake flasks compared to the maximum laccase activity of free mycelia (272.2 U). It is evident from this study that the culture conditions studied, i.e. biomass level, pH, substrate concentration, yeast extract concentration, Cu2+ concentration, and alcohol nature, showed significant influence on the laccase yield. Gel electrophoretic analysis showed the molecular weight of the laccase produced by immobilized P. ostreatus to be 66 kDa. The laccase yield was significantly higher and more rapid in the packed bed reactor than in the shake flask experiments. A maximum laccase yield of 392.9 U was observed within 144 h of the fermentation period with complete glucose depletion.  相似文献   

5.
This paper reviews the immobilization of a thermophilic esterase, AFEST from the archaeon Archaeoglobus fulgidus, on a hydrophobic macroporous resin and its application in polyester synthesis using the ring-opening polymerization of ?-caprolactone as a model. Using the physical adsorption technique, the AFEST loading concentration after 24 h was 152 mg AFEST per g of support. Particle size and surface morphology of the immobilized enzyme were investigated using laser scattering analysis and scanning electron microscopy. The effects of enzyme concentration, temperature, reaction time and reaction medium on monomer conversion and product molecular weight were systematically investigated. Through the optimization of reaction parameters, poly(?-caprolactone) was obtained at an almost 100% monomer conversion rate and with a low average molecular weight (< 1,100 g/mol). Finally, the immobilized enzyme exhibited good operational stability, with a monomer conversion value of more than 55% after four batch reactions.  相似文献   

6.
The effect of methanol on the kinetically controlled synthesis of cephalexin by free and immobilized penicillin G acylase (PGA) was investigated. Catalytic and hydrophobic membranes were obtained by chemical grafting, activation, and PGA immobilization on hydrophobic nylon supports. Butyl methacrylate (BMA) was used as graft monomer. Increasing concentrations of methanol were found to cause a greater deleterious effect on the activity of free than on that of the immobilized enzyme. Methanol, however, improved the kinetic stability of cephalexin synthesized by free PGA, resulting in higher maximum yields. By contrast, immobilized PGA reached 100% yields even in the absence of the cosolvent. Cephalexin synthesis by the catalytic membrane was also performed in a non-isothermal bioreactor. Under these conditions, a 94% increase of the synthetic activity and complete conversion of the limiting substrate to cephalexin were obtained. The addition of methanol reduced the non-isothermal activity increase. The physical cause responsible for the non-isothermal behavior of the hydrophobic catalytic membrane was identified in the process of thermodialysis.  相似文献   

7.
Summary Characteristics of Streptomyces phaeochromogenes cells immobilized by radiation-induced polymerization of 2-hydroxyethyl methacrylate at low temperatures were studied. It was found that very high concentrations of cells could be trapped effectively on the surface of the polymer matrix. Glucose isomerase activity of immobilized cells increased with increasing cell concentration. No cell leakage from the matrix was observed with repeated use, even at very high cell concentration and low monomer concentrations. The Km value of immobilized cells decreased with increasing cell concentration and with decreasing monomer concentration; it was close to that of intact cells.  相似文献   

8.
Yücel Y 《Bioresource technology》2011,102(4):3977-3980
In the present work, microbial lipase from Thermomyces lanuginosus was immobilized by covalent binding onto olive pomace. Immobilized support material used to produce biodiesel with pomace oil and methanol. The properties of the support and immobilized derivative were evaluated by scanning electron microscopy (SEM). The maximum immobilization of T. lanuginosus was obtained as 18.67 mg/g support and the highest specific activity was 10.31 U/mg protein. The properties of immobilized lipase were studied. The effects of protein concentration, pH and buffer concentration on the immobilization and lipase activity were investigated. Biodiesel production using the immobilized lipase was realized by a three-step addition of methanol to avoid strong substrate inhibition. Under the optimized conditions, the maximum biodiesel yield was 93% at 25 °C in 24 h reaction. The immobilized enzyme retained its activity during the 10 repeated batch reactions.  相似文献   

9.
The immobilization procedure of the two industrially important hydantoin cleaving enzymes--hydantoinase and L-N-carbamoylase from Arthrobacter aurescens DSM 3747--was optimized. Using different methods (carbodiimide, epoxy activated carriers) it was possible to immobilize the crude hydantoinase from A. aurescens DSM 3747 to supports containing primary amino groups with a yield of up to 60%. Immobilization on more hydrophobic supports such as Eupergit C and C 250 L resulted in lower yields of activity, whereas the total protein coupled remained constant. All attempts to immobilize the crude L-N-carbamoylase resulted in only low activity yields. Therefore, the enzyme was highly purified and used in immobilization experiments. The pure enzyme could easily be obtained in large amounts by cultivation of a recombinant Escherichia coli strain following a three step purification protocol consisting of cell disruption, chromatography on Streamline diethylaminoethyl and Mono Q. The immobilization of the L-N-carbamoylase was optimized with respect to the coupling yield by varying the coupling method as well as the concentrations of protein, carrier and carbodiimide. Using 60 mM of water-soluble carbodiimide, nearly 100% of the enzyme activity and protein could be immobilized to EAH Sepharose 4B.  相似文献   

10.
To increase the yield percent of prednisolone from hydrocortisone (cortisol), Bacillus pumilus E601 (a radioresistant microorganism) was incorporated into poly(vinyl alcohol) (PVA) cryogel grafted with hydroxyethyl-methacrylate (HEMA) as a crosslinking agent. The polymer was prepared by a radiation polymerization technique at 20 kGy from Co-60 source. The optimum temperature for the biotransformation of hydrocortisone by free cells, poly(PVA)/HEMA, and poly(PVA)/HEMA /N-isopropylacrylamide (N-IPAAm) was 30 °C. The highest yield % of prednisolone was obtained by immobilization of the cells on poly(PVA/HEMA), the addition of N-IPAAm to poly(PVA/HEMA) protected the immobilized cells from temperatures above 35 °C during the fermentation process. The optimal pH (buffered pH) of the biotransformation of hydrocortisone by immobilized and free cells was 7.0, but the maximum yield of prednisolone (60%) was obtained by immobilized cells in comparison with free cells (42%) also at pH 7.0. The prednisolone yield reached 60–65% with 1,2-propanediol cosolvent containing media and 60–62% in the case of ethanediol cosolvent containing media at 1% (v/v) of both cosolvents. 10 mg/50 ml Tween 80 the medium increased the prednisolone yield by only 1.1-fold compared with the control. The maximum bioconversion efficiency was obtained at a substrate concentration of 20 mg/50 ml medium. Stability studies showed that the immobilized cells can be used for seven times without any significant decrease in activity.  相似文献   

11.
The pretreatment of starch raw materials such as sweet potato, potato and cassava has been carried out using various types of crusher, viz juice mixer, homogenizer and high-speed planetary mill. The effect of pretreatment of the materials on their enzymatic hydrolysis was studied. High-speed planetary mill treatment was the most effective and comparable with heat treatment (pasting). Various crushing times were used to examine the effect of crushing by mill treatment on the enzymatic hydrolysis. In the enzymatic hydrolysis of cassava, the use of both cellulase [1,4-(1,3; 1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] and glucoamylase [1,4-α-d-glucan glucohydrolase, EC 3.2.1.3] enhanced the d-glucose yield. The immobilization of glucoamylase was studied by radiation polymerization of hydrophilic monomers at low temperature, and it was found that enzymatic activity of the immobilized glucoamylase particles varied with monomer concentration and particle size. Starchy raw materials pretreated with the mill can be efficiently hydrolysed by immobilized glucoamylase.  相似文献   

12.
Response surface methodology (RSM), based on multivariate non-linear model, was applied to study the interactions and optimization of the immobilization parameters for cell entrapment, namely alginate concentration, cell loading and bead diameter using Erwinia rhapontici NCPPB 1578 that produced palatinose. ANOVA analysis and statistical parameters calculations showed that RSM could be used effectively to model and improve a complex system like cell immobilization. Palatinose yield was increased by 40%. The maximum yield of 140 mg/ml was achieved in a batch of 1h at alginate concentration of 5% w/v, cell loading of 5 g l(-1) and 2.25 mm bead diameter. Thus, the E. rhapontici NCPPB 1578 immobilization in alginate bead and subsequent palatinose yield was successfully improved by application of RSM technique.  相似文献   

13.
The properties of a new and commercially available amino-epoxy support (amino-epoxy-Sepabeads) have been compared to conventional epoxy supports to immobilize enzymes, using the beta-galactosidase from Aspergillus oryzae as a model enzyme. The new support has a layer of epoxy groups over a layer of ethylenediamine that is covalently bound to the support. This support has both a great anionic exchanger strength and a high density of epoxy groups. Epoxy supports require the physical adsorption of the proteins onto the support before the covalent binding of the enzyme to the epoxy groups. Using conventional supports the immobilization rate is slow, because the adsorption is of hydrophobic nature, and immobilization must be performed using high ionic strength (over 0.5 M sodium phosphate) and a support with a fairly hydrophobic nature. Using the new support, immobilization may be performed at moderately low ionic strength, it occurs very rapidly, and it is not necessary to use a hydrophobic support. Therefore, this support should be specially recommended for immobilization of enzymes that cannot be submitted to high ionic strength. Also, both supports may be expected to yield different orientations of the proteins on the support, and that may result in some advantages in specific cases. For example, the model enzyme became almost fully inactivated when using the conventional support, while it exhibited an almost intact activity after immobilization on the new support. Furthermore, enzyme stability was significantly improved by the immobilization on this support (by more than a 12-fold factor), suggesting the promotion of some multipoint covalent attachment between the enzyme and the support (in fact the enzyme adsorbed on an equivalent cationic support without epoxy groups was even slightly less stable than the soluble enzyme).  相似文献   

14.
The possibility of obtaining immobilized horseradish peroxidase (HRP) materials with K'(m) values close to that of the native enzyme, but with good thermal stability, was investigated. The photochemical reaction was used as the immobilization methodology. Temperature and catalyst concentration were found to be the main parameters able to control the immobilization reaction mechanism more than type of functional monomer, polymer-matrix, and enzyme-polymer ratios. By carrying out the immobilization reaction at 35 degrees C and using either bisacryloylpiperazine (BAP) or hexhydro-1,3,5-triacryloyl-s-triazine (HTsT) as the functional monomer, materials with a good thermal stabilization (the retained activity after 240 min at 60 degrees C was between 65-25%) as well as kinetic constants (0.6-0.8 x 10(-4)M) similar to that of the free enzyme (0.57 x 10(-4)M) were obtained. Since low K'(m) values were obtained also using a high polymer content (pBAP copolymers, 25%; pHTsT copolymers, 30%) and neither limitation to substrate diffusion nor a reduction of the enzyme mobility was found, the enzyme should be linked to the matrix during the last steps of monomer polymerization, and it should have an external disposition with respect to the support.  相似文献   

15.
An aerobic bacterium, isolated from a contaminated site, was able to degrade sulfanilic acid (4-aminobenzenesulfonic acid) and was identified as Pseudomonas paucimobilis. The isolate could grow on sulfanilic acid (SA) as its sole carbon and nitrogen source and metabolized the target compound to biomass. The bioconversion capacity depended on the sulfanilic acid concentration; greater than 98% elimination of the hazardous compound was achieved at low (10 mM) sulfanilic acid concentration, and the yield was greater than 70% at 50 mM concentration of the contaminant. The maximum conversion rate was 1.5 mmol sulfanilic acid/h per mg wet cells at 30 degrees C. Ca-alginate-phytagel proved a good matrix for immobilization of P. paucimobilis, with essentially unaltered biodegradation activity. Removal of sulfanilic acid from contaminated industrial waste water was demonstrated. SDS-PAGE analysis of the crude extract revealed novel proteins appearing upon induction with sulfanilic acid and related compounds, which indicated alternative degradation mechanisms involving various inducible enzymes.  相似文献   

16.
Five supports have been evaluated for the immobilization of the epoxide hydrolase from Solanum tuberosum (StEH) by adsorption. The highest immobilization yield (90-99%) and the maximum EH (epoxide hydrolase) activity (0.6 U g-1 wet support) were obtained by ionic adsorption onto DEAE-cellulose. Although the activity recovered upon immobilization of StEH onto DEAE-cellulose was low, a notable stabilization factor of 6.9 at 65°C was obtained. In addition, the immobilized StEH showed a higher temperature for maximal activity (57°C) and the optimal pH (5.0) was shifted one unit towards the acidic region as compared to the free enzyme. Immobilized StEH was successfully reused in six consecutive hydrolytic kinetic resolutions of rac-pCSO without noticeable loss in activity. Finally, the sequential use of immobilized StEH with the immobilized EH from Aspergillus niger (AnEH) in a repeated batch reactor, operated for five cycles, enabled the enantioconvergent preparation of the corresponding (R)-diol, which was thus obtained with an ee of 89% and an overall yield of 100%.  相似文献   

17.
Both the matrix structure of loofa sponge and the flocculating property of cells were necessary for efficient immobilization. The addition of chitosan to a reactor containing a bed of loofa sponge and a Candida brassicae cell suspension induced cell flocculation and the cells were efficiently immobilized. During ethanol production by the immobilized cells, the free cell concentration in the broth was controlled at the desired level by intermittent addition of chitosan to the reactor. The immobilized cell concentration increased but their specific ethanol productivity decreased with an increase in the chitosan concentration. The maximum ethanol productivity was obtained at a low chitosan concentration of 0·03 g/litre. With this optimal concentration, the cell concentration, ethanol yield and productivity were, respectively, 2, 1·3 and 3 times higher than those of the suspension culture.  相似文献   

18.
Highly porous nitrocellulose membranes were prepared by a solvent casting technique for the first time to immobilize α-amylase. An affinity dye, namely Cibacron Blue F3GA (CB), was incorporated covalently within the structure. The nitrocellulose–CB derivatized membranes were used for the immobilization of a starch degrading enzyme, α-amylase. Optimum conditions of immobilization for highest apparent activity were determined as pH 6.0, temperature 50°C and initial enzyme concentration 0.317 KNU/l. Under these optimum conditions, maximum enzyme immobilization yield was around 21% of the initial amount of the enzyme in the solution. Performance of free and immobilized enzymes at the same amount was compared for repeated runs. Up to the third use, immobilized enzyme showed higher activity than that of free enzyme mainly due to higher enzyme concentration in the membrane structure, then the apparent activity decreased gradually. However, when regenerated by switching pH to cause contraction/expansion of the structure, the membrane showed the highest activity, almost 2.5 times than that of the free enzyme. This unusual feature along with inexpensive cost may well make the nitrocellulose membrane an economical material for industrial application in glucose syrup production.  相似文献   

19.
Using the poly-His-tagged-beta-galactosidase from Thermus sp. strain T2 overexpressed in Escherichia coli (MC1116) as a model enzyme, we have developed a strategy to purify and immobilize proteins in a single step, combining the excellent properties of epoxy groups for enzyme immobilization with the good performance of immobilized metal-chelate affinity chromatography for protein purification. The aforementioned enzyme could not be immobilized onto standard epoxy supports with good yields, and after purification and storage, it exhibited a strong trend to yield very large aggregates as shown by ultracentrifugation experiments. That preparation could not be immobilized in any support, very likely because the pores of the solid became clogged by the large aggregates. These novel epoxy-metal chelate heterofunctional supports contain a low concentration of Co(2+) chelated in IDA groups and a high density of epoxy groups. This enabled the selective adsorption of poly-His-tagged enzymes, and as this adsorption step is necessary for the covalent immobilization procedure, the selective covalent immobilization of the target enzyme could take place. This strategy allowed similar maximum loadings of the target enzyme using either pure or crude preparations of the enzyme. The enzyme derivative presented a very high activity at 70 degrees C (over 1000 IU in the hydrolysis of lactose) and very high stability and stabilization when compared to its soluble counterpart (activity remained unaltered after several days of incubation at 50 degrees C). In fact, this preparation was much more stable than when the same enzyme was immobilized onto standard epoxy Sepabeads.  相似文献   

20.
Alpha-amylase was covalently immobilized onto maleic anhydride copolymer films preserving activity. The initial activity of the immobilized layers strongly depended on the immobilization solution, and on the physicochemical properties of the copolymer film. Higher enzyme loading (quantified by amino acid analysis using HPLC) and activity (measured by following starch hydrolysis) were attainable onto hydrophilic, highly swelling 3-D poly(ethylene-alt-maleic anhydride) (PEMA) copolymer films, while immobilization onto hydrophobic poly(octadecene-alt-maleic anhydride) (POMA) copolymer films resulted in low content enzyme layers and lower activity. No significant activity was lost upon dehydration/re-hydration or storage of enzyme containing PEMA copolymer layers in deionised water for up to 48 h. In contrast, α-amylase decorated POMA films suffered a significant activity loss under those conditions. The distinct behaviours may be attributed to the different intrinsic physicochemical properties of the copolymer films. The compact, hydrophobic POMA films possibly favours hydrophobic interactions between the hydrophobic moieties of the protein and the surface, which may result in conformational changes, and consequent loss of activity. Surprisingly, residual activity was found after harsh treatments of active α-amylase PEMA based layers revealing that immobilization onto the hydrophilic polymer films improved the stability of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号